HYPERSPECTRAL ANOMALY DETECTION BASED ON ADAPTIVE WEIGHTED SPARSE DICTIONARY LEARNING

Xin Li, Yuan Yuan

科研成果: 会议稿件论文同行评审

2 引用 (Scopus)

摘要

The background estimation and modeling are the core of hyperspectral anomaly detection. However, the complex hyperspectral image does not conform to the assumption of multivariate normal distribution in most methods. At the same time, the existence of unknown abnormal targets in the background will also affect the modeling of the background. To solve the above problems, a hyperspectral anomaly detection method based on adaptive weighted sparse dictionary learning (AWSDLD) is proposed in this paper. Firstly, the dictionary learning framework based on adaptive weights is used to learn more representative background dictionaries without considering the background distribution. Secondly, due to the capped norm property, the proposed method can effectively suppress the influence of abnormal targets on background modeling. Finally, the abnormal targets are more significant and easier to be detected in the residual image between the reconstructed image and the original image. The experimental results on three real datasets show the effectiveness of the proposed method.

源语言英语
4176-4179
页数4
DOI
出版状态已出版 - 2021
活动2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021 - Brussels, 比利时
期限: 12 7月 202116 7月 2021

会议

会议2021 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2021
国家/地区比利时
Brussels
时期12/07/2116/07/21

指纹

探究 'HYPERSPECTRAL ANOMALY DETECTION BASED ON ADAPTIVE WEIGHTED SPARSE DICTIONARY LEARNING' 的科研主题。它们共同构成独一无二的指纹。

引用此