Hybrid Bayesian Optimization-Based Graphical Discovery for Methylation Sites Prediction

Lingyan Gu, Tingbo Chen, Jianqiang Li, Yu An Huang, Zhihua Du, Victor C.M. Leung, Jie Chen

科研成果: 期刊稿件文章同行评审

摘要

Protein methylation is one of the most important reversible post-translational modifications (PTMs), playing a vital role in the regulation of gene expression. Protein methylation sites serve as biomarkers in cardiovascular and pulmonary diseases, influencing various aspects of normal cell biology and pathogenesis. Nonetheless, the majority of existing computational methods for predicting protein methylation sites (PMSP) have been constructed based on protein sequences, with few methods leveraging the topological information of proteins. To address this issue, we propose an innovative framework for predicting Methylation Sites using Graphs (GraphMethySite) that employs graph convolution network in conjunction with Bayesian Optimization (BO) to automatically discover the graphical structure surrounding a candidate site and improve the predictive accuracy. In order to extract the most optimal subgraphs associated with methylation sites, we extend GraphMethySite by coupling it with a hybrid Bayesian optimization (together named GraphMethySite+) to determine and visualize the topological relevance among amino-acid residues. We evaluated our framework on two extended protein methylation datasets, and empirical results demonstrate that it outperforms existing state-of-the-art methylation prediction methods.

源语言英语
页(从-至)1917-1926
页数10
期刊IEEE Journal of Biomedical and Health Informatics
28
4
DOI
出版状态已出版 - 1 4月 2024

指纹

探究 'Hybrid Bayesian Optimization-Based Graphical Discovery for Methylation Sites Prediction' 的科研主题。它们共同构成独一无二的指纹。

引用此