Human visual perception-inspired medical image segmentation network with multi-feature compression

Guangju Li, Qinghua Huang, Wei Wang, Longzhong Liu

科研成果: 期刊稿件文章同行评审

摘要

Medical image segmentation is crucial for computer-aided diagnosis and treatment planning, directly influencing clinical decision-making. To enhance segmentation accuracy, existing methods typically fuse local, global, and various other features. However, these methods often ignore the negative impact of noise on the results during the feature fusion process. In contrast, certain regions of the human visual system, such as the inferotemporal cortex and parietal cortex, effectively suppress irrelevant noise while integrating multiple features—a capability lacking in current methods. To address this gap, we propose MS-Net, a medical image segmentation network inspired by human visual perception. MS-Net incorporates a multi-feature compression (MFC) module that mimics the human visual system's processing of complex images, first learning various feature types and subsequently filtering out irrelevant ones. Additionally, MS-Net features a segmentation refinement (SR) module that emulates how physicians segment lesions. This module initially performs coarse segmentation to capture the lesion's approximate location and shape, followed by a refinement step to achieve precise boundary delineation. Experimental results demonstrate that MS-Net not only attains state-of-the-art segmentation performance across three public datasets but also significantly reduces the number of parameters compared to existing models. Code is available at https://github.com/guangguangLi/MS-Net

源语言英语
文章编号103133
期刊Artificial Intelligence in Medicine
165
DOI
出版状态已出版 - 7月 2025

指纹

探究 'Human visual perception-inspired medical image segmentation network with multi-feature compression' 的科研主题。它们共同构成独一无二的指纹。

引用此