How to Evaluate the Generalization of Detection? A Benchmark for Comprehensive Open-Vocabulary Detection

Yiyang Yao, Peng Liu, Tiancheng Zhao, Qianqian Zhang, Jiajia Liao, Chunxin Fang, Kyusong Lee, Qing Wang

科研成果: 书/报告/会议事项章节会议稿件同行评审

2 引用 (Scopus)

摘要

Object detection (OD) in computer vision has made significant progress in recent years, transitioning from closed-set labels to open-vocabulary detection (OVD) based on large-scale vision-language pre-training (VLP). However, current evaluation methods and datasets are limited to testing generalization over object types and referral expressions, which do not provide a systematic, fine-grained, and accurate benchmark of OVD models' abilities. In this paper, we propose a new benchmark named OVDEval, which includes 9 subtasks and introduces evaluations on commonsense knowledge, attribute understanding, position understanding, object relation comprehension, and more. The dataset is meticulously created to provide hard negatives that challenge models' true understanding of visual and linguistic input. Additionally, we identify a problem with the popular Average Precision (AP) metric when benchmarking models on these fine-grained label datasets and propose a new metric called Non-Maximum Suppression Average Precision (NMS-AP) to address this issue. Extensive experimental results show that existing top OVD models all fail on the new tasks except for simple object types, demonstrating the value of the proposed dataset in pinpointing the weakness of current OVD models and guiding future research. Furthermore, the proposed NMS-AP metric is verified by experiments to provide a much more truthful evaluation of OVD models, whereas traditional AP metrics yield deceptive results. Data is available at https://github.com/om-ai-lab/OVDEval.

源语言英语
主期刊名Technical Tracks 14
编辑Michael Wooldridge, Jennifer Dy, Sriraam Natarajan
出版商Association for the Advancement of Artificial Intelligence
6630-6638
页数9
版本7
ISBN(电子版)1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 1577358872, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879, 9781577358879
DOI
出版状态已出版 - 25 3月 2024
活动38th AAAI Conference on Artificial Intelligence, AAAI 2024 - Vancouver, 加拿大
期限: 20 2月 202427 2月 2024

出版系列

姓名Proceedings of the AAAI Conference on Artificial Intelligence
编号7
38
ISSN(印刷版)2159-5399
ISSN(电子版)2374-3468

会议

会议38th AAAI Conference on Artificial Intelligence, AAAI 2024
国家/地区加拿大
Vancouver
时期20/02/2427/02/24

指纹

探究 'How to Evaluate the Generalization of Detection? A Benchmark for Comprehensive Open-Vocabulary Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此