High temperature crystallization of free-standing anatase TiO2 nanotube membranes for high efficiency dye-sensitized solar cells

Jia Lin, Min Guo, Cho Tung Yip, Wei Lu, Guoge Zhang, Xiaolin Liu, Limin Zhou, Xianfeng Chen, Haitao Huang

科研成果: 期刊稿件文章同行评审

78 引用 (Scopus)

摘要

Despite the one-dimensional ordering of anodic TiO2 nanotube arrays (TNAs), the electron diffusion towards the substrate in TNA-based dye-sensitized solar cells (DSSCs) is comparably slow. The improvement of electron mobility by enhancing TNA crystallinity under high-temperature annealing, however, is infeasible with the existence of Ti metal substrate. Herein, it is shown that, by high temperature (up to 700°C) crystallization of high-quality free-standing TNA membranes, the TNAs can maintain their structure integrity and phase (anatase) stability as a result of the absence of the nucleation sites and the high quality of the membrane obtained by a self-detachment method. The electron transport is much faster (≈4 times) in the 700°C-annealed TNA membranes than that in the 400°C-treated ones for 20 μm-length nanotubes, which is mainly attributed to the improved crystallinity and reduced electron trap states. In spite of slightly reduced dye loading capacity (decreased by ≈30%) in the 700°C-annealed membranes, the superior electron transport leads to a significantly improved efficiency of 7.81% (enhanced by ≈50%). The strategy of manipulating the electron transport dynamics by high temperature treatment on high-quality TNA membranes may open new route for further improvement in the performances of TNA-based DSSCs.

源语言英语
页(从-至)5952-5960
页数9
期刊Advanced Functional Materials
23
47
DOI
出版状态已出版 - 17 12月 2013
已对外发布

指纹

探究 'High temperature crystallization of free-standing anatase TiO2 nanotube membranes for high efficiency dye-sensitized solar cells' 的科研主题。它们共同构成独一无二的指纹。

引用此