TY - GEN
T1 - Hierarchical Brain Networks Decomposition via Prior Knowledge Guided Deep Belief Network
AU - Pang, Tianji
AU - Zhu, Dajiang
AU - Liu, Tianming
AU - Han, Junwei
AU - Zhao, Shijie
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - Modeling and characterizing functional brain networks from task-based functional magnetic resonance imaging (fMRI) data has been a popular topic in neuroimaging community. Recently, deep belief network (DBN) has shown great advantages in modeling the hierarchical and complex task functional brain networks (FBNs). However, due to the unsupervised nature, traditional DBN algorithms may be limited in fully utilizing the prior knowledge from the task design. In addition, the FBNs extracted from different DBN layers do not have correspondences, which makes the hierarchical analysis of FBNs a challenging problem. In this paper, we propose a novel prior knowledge guided DBN (PKG-DBN) to overcome the above limitations when conducting hierarchical task FBNs analysis. Specifically, we enforce part of the time courses learnt from DBN to be task-related (in either positive or negative way) and the rest to be linear combinations of task-related components. By incorporating such constraints in the learning process, our method can simultaneously leverage the advantages of data-driven approaches and the prior knowledge of task design. Our experiment results on HCP task fMRI data showed that the proposed PKG-DBN can not only successfully identify meaningful hierarchical task FBNs with correspondence comparing to traditional DBN models, but also converge significantly faster than traditional DBN models.
AB - Modeling and characterizing functional brain networks from task-based functional magnetic resonance imaging (fMRI) data has been a popular topic in neuroimaging community. Recently, deep belief network (DBN) has shown great advantages in modeling the hierarchical and complex task functional brain networks (FBNs). However, due to the unsupervised nature, traditional DBN algorithms may be limited in fully utilizing the prior knowledge from the task design. In addition, the FBNs extracted from different DBN layers do not have correspondences, which makes the hierarchical analysis of FBNs a challenging problem. In this paper, we propose a novel prior knowledge guided DBN (PKG-DBN) to overcome the above limitations when conducting hierarchical task FBNs analysis. Specifically, we enforce part of the time courses learnt from DBN to be task-related (in either positive or negative way) and the rest to be linear combinations of task-related components. By incorporating such constraints in the learning process, our method can simultaneously leverage the advantages of data-driven approaches and the prior knowledge of task design. Our experiment results on HCP task fMRI data showed that the proposed PKG-DBN can not only successfully identify meaningful hierarchical task FBNs with correspondence comparing to traditional DBN models, but also converge significantly faster than traditional DBN models.
KW - Deep neural network
KW - Functional brain networks
KW - Hierarchical organization
KW - Human connectome project
KW - Supervise
UR - http://www.scopus.com/inward/record.url?scp=85138798706&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-16431-6_24
DO - 10.1007/978-3-031-16431-6_24
M3 - 会议稿件
AN - SCOPUS:85138798706
SN - 9783031164309
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 251
EP - 260
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
A2 - Wang, Linwei
A2 - Dou, Qi
A2 - Fletcher, P. Thomas
A2 - Speidel, Stefanie
A2 - Li, Shuo
PB - Springer Science and Business Media Deutschland GmbH
T2 - 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Y2 - 18 September 2022 through 22 September 2022
ER -