TY - GEN
T1 - Hierarchical and Global Modality Interaction for Brain Tumor Segmentation
AU - Yang, Yang
AU - Wei, Shuhang
AU - Zhang, Dingwen
AU - Yan, Qingsen
AU - Zhao, Shijie
AU - Han, Junwei
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022
Y1 - 2022
N2 - Multi-modality brain tumor segmentation is vital for the treatment of gliomas, which aims to predict the regions of the necrosis, edema and tumor core on multi-modality magnetic resonance images (MRIs). However, it is a challenging task due to the complex appearance and diversity shapes of tumors. Considering that multi modality of MRIs contain rich biological properties of the tumors, we propose a novel multi-modality tumor segmentation network for segmenting the brain tumor based on fusing the complementary information and global semantic dependency information upon the multi-modality imaging data. Specifically, we propose a hierarchical modality interaction block to build the internal relationship between complementary modality pair, and then enhance the complementary information between the them by using the channel and spatial co-attention. To capture the long-dependency relationship of cross-modality information, we propose a global modality interaction transformer block to build the global semantic interaction between the multi-modality local features. The global modality interaction Transformer block makes up for CNN’s poor perception of global semantic dependency information across modes. We evaluate our method on the validation set of multi-modality brain tumor segmentation challenge 2021 (BraTs2021). The proposed multi-modality brain tumor segmentation network achieves 0.8518, 0.8808 and 0.926 Dice score for the ET, CT and WT.
AB - Multi-modality brain tumor segmentation is vital for the treatment of gliomas, which aims to predict the regions of the necrosis, edema and tumor core on multi-modality magnetic resonance images (MRIs). However, it is a challenging task due to the complex appearance and diversity shapes of tumors. Considering that multi modality of MRIs contain rich biological properties of the tumors, we propose a novel multi-modality tumor segmentation network for segmenting the brain tumor based on fusing the complementary information and global semantic dependency information upon the multi-modality imaging data. Specifically, we propose a hierarchical modality interaction block to build the internal relationship between complementary modality pair, and then enhance the complementary information between the them by using the channel and spatial co-attention. To capture the long-dependency relationship of cross-modality information, we propose a global modality interaction transformer block to build the global semantic interaction between the multi-modality local features. The global modality interaction Transformer block makes up for CNN’s poor perception of global semantic dependency information across modes. We evaluate our method on the validation set of multi-modality brain tumor segmentation challenge 2021 (BraTs2021). The proposed multi-modality brain tumor segmentation network achieves 0.8518, 0.8808 and 0.926 Dice score for the ET, CT and WT.
KW - Brain tumor segmentation
KW - Cross-modality information
KW - Transformer
UR - http://www.scopus.com/inward/record.url?scp=85135036858&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-08999-2_38
DO - 10.1007/978-3-031-08999-2_38
M3 - 会议稿件
AN - SCOPUS:85135036858
SN - 9783031089985
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 441
EP - 450
BT - Brainlesion
A2 - Crimi, Alessandro
A2 - Bakas, Spyridon
PB - Springer Science and Business Media Deutschland GmbH
T2 - 7th International Brain Lesion Workshop, BrainLes 2021, held in conjunction with the Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
Y2 - 27 September 2021 through 27 September 2021
ER -