GSPL: A Succinct Kernel Model for Group-Sparse Projections Learning of Multiview Data

Danyang Wu, Jin Xu, Xia Dong, Meng Liao, Rong Wang, Feiping Nie, Xuelong Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

7 引用 (Scopus)

摘要

This paper explores a succinct kernel model for Group-Sparse Projections Learning (GSPL), to handle multiview feature selection task completely. Compared to previous works, our model has the following useful properties: 1) Strictness: GSPL innovatively learns group-sparse projections strictly on multiview data via '2,0-norm constraint, which is different with previous works that encourage group-sparse projections softly. 2) Adaptivity: In GSPL model, when the total number of selected features is given, the numbers of selected features of different views can be determined adaptively, which avoids artificial settings. Besides, GSPL can capture the differences among multiple views adaptively, which handles the inconsistent problem among different views. 3) Succinctness: Except for the intrinsic parameters of projection-based feature selection task, GSPL does not bring extra parameters, which guarantees the applicability in practice. To solve the optimization problem involved in GSPL, a novel iterative algorithm is proposed with rigorously theoretical guarantees. Experimental results demonstrate the superb performance of GSPL on synthetic and real datasets.

源语言英语
主期刊名Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021
编辑Zhi-Hua Zhou
出版商International Joint Conferences on Artificial Intelligence
3185-3191
页数7
ISBN(电子版)9780999241196
DOI
出版状态已出版 - 2021
活动30th International Joint Conference on Artificial Intelligence, IJCAI 2021 - Virtual, Online, 加拿大
期限: 19 8月 202127 8月 2021

出版系列

姓名IJCAI International Joint Conference on Artificial Intelligence
ISSN(印刷版)1045-0823

会议

会议30th International Joint Conference on Artificial Intelligence, IJCAI 2021
国家/地区加拿大
Virtual, Online
时期19/08/2127/08/21

指纹

探究 'GSPL: A Succinct Kernel Model for Group-Sparse Projections Learning of Multiview Data' 的科研主题。它们共同构成独一无二的指纹。

引用此