Grafting Robust Thick Zwitterionic Polymer Brushes via Subsurface-Initiated Ring-Opening Metathesis Polymerization for Antimicrobial and Anti-Biofouling

Qian Ye, Baoluo He, Yun Zhang, Jin Zhang, Shujuan Liu, Feng Zhou

科研成果: 期刊稿件文章同行评审

78 引用 (Scopus)

摘要

In the present work, high-thickness zwitterionic polymer brushes based on imidazolium salts were successfully grafted via a novel subsurface-initiated ring-opening metathesis polymerization (subsurface-initiated ROMP) from polydimethylsiloxane (PDMS), and their antifouling performance was evaluated in detail. First, an initiator-embedded PDMS was prepared via copolymerization of PDMS prepolymer and ROMP initiator, and then zwitterionic polymer brushes were grafted via subsurface-initiated ROMP from surface to subsurface of the PDMS due to the implanted ROMP initiator. Results from a series of characterization methods such as infrared spectroscopy, X-ray photoelectron spectroscopy, contact angle, and atomic force microscopy proved the zwitterionic polymer brushes' successful grafting. The grafting thickness of zwitterionic polymer brushes via subsurface-initiated ROMP can reach the micron scale, and the as-prepared zwitterionic polymer based surfaces showed good lubricating properties compared to traditional surface-initiated ROMP, which hints that polymer brushes can be grafted not only on the surface but also on the subsurface of PDMS. The protein adhesion test and biofouling assay of zwitterionic polymer brushes were tested in the laboratory, and the results indicated that the zwitterionic polymer-functionalized PDMS can effectively resist the adhesion of bovine serum albumin and algae (Porphyridium and Dunaliella) and has good anti-bacterial activity against both Escherichia coli and Staphylococcus aureus.

源语言英语
页(从-至)39171-39178
页数8
期刊ACS Applied Materials and Interfaces
11
42
DOI
出版状态已出版 - 23 10月 2019

指纹

探究 'Grafting Robust Thick Zwitterionic Polymer Brushes via Subsurface-Initiated Ring-Opening Metathesis Polymerization for Antimicrobial and Anti-Biofouling' 的科研主题。它们共同构成独一无二的指纹。

引用此