GETNET: A General End-To-End 2-D CNN Framework for Hyperspectral Image Change Detection

Qi Wang, Zhenghang Yuan, Qian Du, Xuelong Li

科研成果: 期刊稿件文章同行评审

506 引用 (Scopus)

摘要

Change detection (CD) is an important application of remote sensing, which provides timely change information about large-scale Earth surface. With the emergence of hyperspectral imagery, CD technology has been greatly promoted, as hyperspectral data with high spectral resolution are capable of detecting finer changes than using the traditional multispectral imagery. Nevertheless, the high dimension of the hyperspectral data makes it difficult to implement traditional CD algorithms. Besides, endmember abundance information at subpixel level is often not fully utilized. In order to better handle high-dimension problem and explore abundance information, this paper presents a general end-To-end 2-D convolutional neural network (CNN) framework for hyperspectral image CD (HSI-CD). The main contributions of this paper are threefold: 1) mixed-Affinity matrix that integrates subpixel representation is introduced to mine more cross-channel gradient features and fuse multisource information; 2) 2-D CNN is designed to learn the discriminative features effectively from the multisource data at a higher level and enhance the generalization ability of the proposed CD algorithm; and 3) the new HSI-CD data set is designed for objective comparison of different methods. Experimental results on real hyperspectral data sets demonstrate that the proposed method outperforms most of the state of the arts.

源语言英语
文章编号8418840
页(从-至)3-13
页数11
期刊IEEE Transactions on Geoscience and Remote Sensing
57
1
DOI
出版状态已出版 - 1月 2019

指纹

探究 'GETNET: A General End-To-End 2-D CNN Framework for Hyperspectral Image Change Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此