Generating Content for HDR Deghosting from Frequency View

Tao Hu, Qingsen Yan, Yuankai Qi, Yanning Zhang

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)

摘要

Recovering ghost-free High Dynamic Range (HDR) images from multiple Low Dynamic Range (LDR) images becomes challenging when the LDR images exhibit saturation and significant motion. Recent Diffusion Models (DMs) have been introduced in HDR imaging field, demonstrating promising performance, particularly in achieving visually perceptible results compared to previous DNN-based methods. However, DMs require extensive iterations with large models to estimate entire images, resulting in inefficiency that hinders their practical application. To address this challenge, we propose the Low-Frequency aware Diffusion (LF-Diff) model for ghost-free HDR imaging. The key idea of LF-Diff is implementing the DMs in a highly compacted latent space and integrating it into a regression-based model to enhance the details of reconstructed images. Specifically, as low-frequency information is closely related to human visual perception we propose to utilize DMs to create compact low-frequency priors for the reconstruction process. In addition, to take full advantage of the above low-frequency priors, the Dynamic HDR Reconstruction Network (DHRNet) is carried out in a regression-based manner to obtain final HDR images. Extensive experiments conducted on synthetic and real-world benchmark datasets demonstrate that our LF-Diff performs favorably against several state-of-the-art methods and is 10x faster than previous DM-based methods.

源语言英语
主期刊名Proceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
出版商IEEE Computer Society
25732-25741
页数10
ISBN(电子版)9798350353006
DOI
出版状态已出版 - 2024
活动2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, 美国
期限: 16 6月 202422 6月 2024

出版系列

姓名Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN(印刷版)1063-6919

会议

会议2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
国家/地区美国
Seattle
时期16/06/2422/06/24

指纹

探究 'Generating Content for HDR Deghosting from Frequency View' 的科研主题。它们共同构成独一无二的指纹。

引用此