Gate-ID: WiFi-Based Human Identification Irrespective of Walking Directions in Smart Home

Jin Zhang, Bo Wei, Fuxiang Wu, Limeng Dong, Wen Hu, Salil S. Kanhere, Chengwen Luo, Shui Yu, Jun Cheng

科研成果: 期刊稿件文章同行评审

50 引用 (Scopus)

摘要

Research has shown the potential of device-free WiFi sensing for human identification. Each and every human has a unique gait and prior works suggest WiFi devices are able to capture the unique signature of a person's gait. In this article, we show for the first time that the monitored gait could be inconsistent and have mirror-like perturbations when individuals walk through WiFi devices in different directions, provided that the WiFi antenna array is horizontal to the walking path. Such inconsistent mirrored patterns are to negatively affect the uniqueness of gait and accuracy of human identification. Therefore, we propose a system called Gate-ID for accurately identifying individuals' identities irrespective of different walking directions. Gate-ID employs theoretical communication model and real measurements to demonstrate that antenna array orientations and walking directions contribute to the mirror-like patterns in WiFi signals. A novel heuristic algorithm is proposed to infer individual's walking directions. A set of methods are employed to extract and augment the representative spatial-temporal features of gait and enable the system performing irrespective of walking directions. We further propose a novel attention-based deep learning model that fuses various weighted features and ignores ineffective noises to uniquely identify individuals. We implement Gate-ID on commercial off-the-shelf devices. Extensive experiments demonstrate that our system can uniquely identify people with average accuracy of 90.7%-75.7% from a group of 6-20 people, respectively, and improve the accuracy by 12.5%-43.5% compared with baselines.

源语言英语
文章编号9272621
页(从-至)7610-7624
页数15
期刊IEEE Internet of Things Journal
8
9
DOI
出版状态已出版 - 1 5月 2021
已对外发布

指纹

探究 'Gate-ID: WiFi-Based Human Identification Irrespective of Walking Directions in Smart Home' 的科研主题。它们共同构成独一无二的指纹。

引用此