TY - JOUR
T1 - Fully constrained oblique projection approach to mixed pixel linear unmixing
AU - He, Mingyi
AU - Mei, Shaohui
PY - 2008
Y1 - 2008
N2 - Mixed pixels, which are inevitable in remote sensing images, often result in a lot of limitations in their applications. A novel approach for mixed pixel's fully constrained unmixing, Fully Constrained Oblique Subspace Projection (FCOBSP) Linear Unmixing algorithm, is proposed to handle this problem. The Oblique Subspace Projection, in which the signal space is oblique to the background space, is introduced to the settlement of the Linear Mixture Model (LMM). The abundance of constitutional spectral signature can be obtained through projecting the mixed pixel to the spectral signature subspace. One of the two well-known constraints of LMM, namely the non-negative constraint, is met by projecting mixed pixels to continually modified background space. The other constraint, namely the sum-to-one constraint, is embedded into the LMM to realize fully constrained linear unmixing. The performance of the proposed algorithm is evaluated by synthetic multispectral pixels decomposition. Compared with the popular Fully Constrained Least Square unmixing (FCLS) algorithm and Oblique Subspace Projection (OBSP), in terms of both RMSE and correlation coefficient with the real abundance, the proposed algorithm achieves significant improvement over these algorithms in spite of a little more time cost. The proposed algorithm has been used to handle the practical classification problems which dealing with the real multispectral and hyperspectral data, and the decomposition results show that the objects are well separated.
AB - Mixed pixels, which are inevitable in remote sensing images, often result in a lot of limitations in their applications. A novel approach for mixed pixel's fully constrained unmixing, Fully Constrained Oblique Subspace Projection (FCOBSP) Linear Unmixing algorithm, is proposed to handle this problem. The Oblique Subspace Projection, in which the signal space is oblique to the background space, is introduced to the settlement of the Linear Mixture Model (LMM). The abundance of constitutional spectral signature can be obtained through projecting the mixed pixel to the spectral signature subspace. One of the two well-known constraints of LMM, namely the non-negative constraint, is met by projecting mixed pixels to continually modified background space. The other constraint, namely the sum-to-one constraint, is embedded into the LMM to realize fully constrained linear unmixing. The performance of the proposed algorithm is evaluated by synthetic multispectral pixels decomposition. Compared with the popular Fully Constrained Least Square unmixing (FCLS) algorithm and Oblique Subspace Projection (OBSP), in terms of both RMSE and correlation coefficient with the real abundance, the proposed algorithm achieves significant improvement over these algorithms in spite of a little more time cost. The proposed algorithm has been used to handle the practical classification problems which dealing with the real multispectral and hyperspectral data, and the decomposition results show that the objects are well separated.
KW - Detection
KW - Hyperspectral
KW - Image
KW - Multispectral
KW - Processing
KW - Recognition
KW - Sub-pixel classification
UR - http://www.scopus.com/inward/record.url?scp=77956058894&partnerID=8YFLogxK
M3 - 会议文章
AN - SCOPUS:77956058894
SN - 1682-1750
VL - 37
SP - 661
EP - 666
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
T2 - 21st Congress of the International Society for Photogrammetry and Remote Sensing, ISPRS 2008
Y2 - 3 July 2008 through 11 July 2008
ER -