摘要
Wire-Shaped lithium sulfur batteries are regarded as a promising solution for burgeoning wearable electronics, intelligent textiles, flexible electronics, due to its great advantages of high theoretical specific capacity and energy density, flexibility and weavability. However, there remains a critical challenge in the manufacturing of mechanically robust, highly conductive and industrially processable fibrous cathodes. Here, a new and general strategy is proposed to produce freestanding sulfur-containing fibrous electrodes using industrially weavable stainless steel fibers (SSFs) as supports and current collectors. The SSFs based electrodes not only enable the feasibility of continuous processing and large-scale production, but also feature a porous fibrous structure that allows the imbibition of graphene-sulfur composite by facile capillary action. The wire-shaped lithium sulfur battery fabricated by this hybrid fibrous cathode shows mechanical robustness, high flexibility and excellent electrochemical performances. It can reach a capacity of 335 mAh g−1 at a current density of 167.5 (0.1 C) mA g−1, keep high stability after running for 100 cycles and realize a series of sophisticated applications for the flexible and wearable electronics.
源语言 | 英语 |
---|---|
页(从-至) | 325-333 |
页数 | 9 |
期刊 | Nano Energy |
卷 | 33 |
DOI | |
出版状态 | 已出版 - 1 3月 2017 |
已对外发布 | 是 |