Flame stabilization of supersonic ethylene jet in fuel-rich hot coflow

Bing Liu, Guoqiang He, Fei Qin, Qingchun Lei, Jian An, Zhiwei Huang

科研成果: 期刊稿件文章同行评审

20 引用 (Scopus)

摘要

The stability limit of a supersonic ethylene jet flame in a fuel-rich hot coflow was examined by investigating the influence of the injection pressure, which was varied from 2.0 atm to 4.5 atm, and of the equivalence ratio of the coflow, which was varied from 1.2 to 1.6. The flames were investigated with time-resolved chemiluminescence and schlieren images, as well as a large-eddy simulation of combustion. The results show that, with increasing injection pressure, the flame state changes from stable to unstable and blow-off, and the flame brush thickness, heat release, and height of coflow decrease. The flame stability limits decrease as the equivalence ratio of coflow increases. Lastly, a large-eddy simulation was performed to investigate the mechanism of flame stabilization, and the numerical simulation results are in good agreement with the experimental results. It was found that the stability of a supersonic flame is affected by the chemical time scale and flow time scale.

源语言英语
页(从-至)142-151
页数10
期刊Combustion and Flame
204
DOI
出版状态已出版 - 6月 2019

指纹

探究 'Flame stabilization of supersonic ethylene jet in fuel-rich hot coflow' 的科研主题。它们共同构成独一无二的指纹。

引用此