TY - JOUR
T1 - First-principles calculation of structural, electronic, optical, and mechanical properties of SrVO3
AU - Qiu, Zhi Yuan
AU - Li, Wen Guang
AU - Liu, Qi Jun
AU - Liu, Zheng Tang
N1 - Publisher Copyright:
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
PY - 2024/8
Y1 - 2024/8
N2 - Context and results : In this paper, the crystal structure, electronic, optical, and mechanical properties of SrVO3 have been systematically studied by first-principles calculation. The results show that the calculated lattice parameters are in good agreement with the experimental values of X-ray diffraction. The density of states is described in detail in this paper. By analyzing the crystal structure and electronic properties of SrVO3, the magnetic properties of SrVO3 are obtained from the one unpaired electrons of V and the exchange interaction between two V ions. At the same time, a detailed analysis of the optical properties of SrVO3 was conducted, and it was found that it is transparent in the visible light range. Finally, the mechanical properties of SrVO3 are calculated, which can provide some references for future research. Computational method: In this paper, a first-principles method based on density functional theory (DFT) is reported for PBE-GGA analysis using the plane wave-pseudo potential method in a quantum concentrate packet, U value of 7 eV to V-d and a U value of 2 eV to O-p, Grimme correction by DFT-D method. The k points in the Brillouin region are set to 4 × 4 × 4. The energy convergence criterion for self-consistent field calculation is set at 5.0 × 10−6 eV/atom, and the cutoff energy is 1170 eV. In this paper, the force acting on each atom is not more than 0.01 eV/Å, the maximum stress is not more than 0.02GPa, and the maximum atomic displacement is 5 × 10−4 Å.
AB - Context and results : In this paper, the crystal structure, electronic, optical, and mechanical properties of SrVO3 have been systematically studied by first-principles calculation. The results show that the calculated lattice parameters are in good agreement with the experimental values of X-ray diffraction. The density of states is described in detail in this paper. By analyzing the crystal structure and electronic properties of SrVO3, the magnetic properties of SrVO3 are obtained from the one unpaired electrons of V and the exchange interaction between two V ions. At the same time, a detailed analysis of the optical properties of SrVO3 was conducted, and it was found that it is transparent in the visible light range. Finally, the mechanical properties of SrVO3 are calculated, which can provide some references for future research. Computational method: In this paper, a first-principles method based on density functional theory (DFT) is reported for PBE-GGA analysis using the plane wave-pseudo potential method in a quantum concentrate packet, U value of 7 eV to V-d and a U value of 2 eV to O-p, Grimme correction by DFT-D method. The k points in the Brillouin region are set to 4 × 4 × 4. The energy convergence criterion for self-consistent field calculation is set at 5.0 × 10−6 eV/atom, and the cutoff energy is 1170 eV. In this paper, the force acting on each atom is not more than 0.01 eV/Å, the maximum stress is not more than 0.02GPa, and the maximum atomic displacement is 5 × 10−4 Å.
KW - Electronic properties
KW - Mechanical properties
KW - Optical properties
KW - Structure properties
UR - http://www.scopus.com/inward/record.url?scp=85199076018&partnerID=8YFLogxK
U2 - 10.1007/s00894-024-06076-y
DO - 10.1007/s00894-024-06076-y
M3 - 文章
C2 - 39028369
AN - SCOPUS:85199076018
SN - 1610-2940
VL - 30
JO - Journal of Molecular Modeling
JF - Journal of Molecular Modeling
IS - 8
M1 - 276
ER -