Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model

Bagh Ali, Sajjad Hussain, Yufeng Nie, Ahmed Kadhim Hussein, Danial Habib

科研成果: 期刊稿件文章同行评审

138 引用 (Scopus)

摘要

A description for magnetohydrodynamic effects on the transient rotational flow of Oldroyd-B nanofluids is considered. The temperature and concentration distributions are associated with Cattaneo-Christove double diffusion, Brownian motion, thermophoresis, Soret, and Dufour. The governing equations in the three-dimensional form are transmuted into dimensionless two-dimensional form with the implementation of suitable scaling transformations. The variational finite element procedure is harnessed and coded in Matlab script to obtain the numerical solution of the coupled non-linear partial differential problem. The varying patterns of velocities, skin friction coefficients, Nusselt number, Sherwood number, fluid temperature, and concentration functions are computed to reveal the physical nature of this study. It is observed that higher inputs of the parameters for magnetic force, Deborah number, rotational fluid, and cause to slow the primary as well as secondary velocities but they raise the temperature like thermophoresis and Brownian motion does. However, thermal relaxation parameter reduces the nanofluid temperature. The local heat transfer rate reduces against Nt, rotational, and Nb parameters, and it is higher for Prandtl number. The current FEM (finite element method) solutions have been approved widely with the recent published results, showing an excellent correlation. The examination has significant applications in the food industry and relevance to energy systems, biomedical, and modern technologies of aerospace systems.

源语言英语
页(从-至)439-452
页数14
期刊Powder Technology
377
DOI
出版状态已出版 - 2 1月 2021

指纹

探究 'Finite element investigation of Dufour and Soret impacts on MHD rotating flow of Oldroyd-B nanofluid over a stretching sheet with double diffusion Cattaneo Christov heat flux model' 的科研主题。它们共同构成独一无二的指纹。

引用此