Feature selection via incorporating stiefel manifold in relaxed K-means

Guohao Cai, Rui Zhang, Feiping Nie, Xuelong Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

The task of feature selection is to find the optimal feature subset such that an appropriate criterion is optimized. It can be seen as a special subspace learning task, where the projection matrix is constrained to be selection matrix. In this paper, a novel unsupervised graph embedded feature selection (GEFS) method is derived from the perspective of incorporating the projected k-means with Stiefel manifold regularization. To achieve more statistical and structural properties, we directly embed unsupervised feature selection algorithm into a clustering algorithm via sparse learning to suppress the projected matrix to be row sparse. Comparative experiments demonstrate the effectiveness of our proposed algorithm in comparison with the traditional methods for feature selection.

源语言英语
主期刊名2018 IEEE International Conference on Image Processing, ICIP 2018 - Proceedings
出版商IEEE Computer Society
1503-1507
页数5
ISBN(电子版)9781479970612
DOI
出版状态已出版 - 29 8月 2018
活动25th IEEE International Conference on Image Processing, ICIP 2018 - Athens, 希腊
期限: 7 10月 201810 10月 2018

出版系列

姓名Proceedings - International Conference on Image Processing, ICIP
ISSN(印刷版)1522-4880

会议

会议25th IEEE International Conference on Image Processing, ICIP 2018
国家/地区希腊
Athens
时期7/10/1810/10/18

指纹

探究 'Feature selection via incorporating stiefel manifold in relaxed K-means' 的科研主题。它们共同构成独一无二的指纹。

引用此