Fault diagnosing ECG in body sensor networks based on hidden markov model

Haibin Zhang, Jiajia Liu

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

In this paper, we focus on medical body sensor networks collecting physiological signs to monitor the health of patients. We propose a Hidden Markov Model (HMM) based method for fault diagnosis of ECG sensor data. We firstly verify the Markov property of heart rate sequences by medical datasets. Then we use the Baum-Welch algorithm to estimate parameters of HMMs by history training data, and the Viterbi algorithm to determine whether the new sensor reading is fault. Finally, we do experiments on both real and synthetic medical datasets to study the performance of our method. The result shows that the proposed approach possesses a good detection accuracy with a low false alarm rate.

源语言英语
主期刊名Proceedings - 2014 10th International Conference on Mobile Ad-Hoc and Sensor Networks, MSN 2014
出版商Institute of Electrical and Electronics Engineers Inc.
123-129
页数7
ISBN(电子版)9781479973941
DOI
出版状态已出版 - 27 2月 2014
已对外发布
活动10th IEEE International Conference on Mobile Ad-Hoc and Sensor Networks, MSN 2014 - Maui, 美国
期限: 19 12月 201421 12月 2014

出版系列

姓名Proceedings - 2014 10th International Conference on Mobile Ad-Hoc and Sensor Networks, MSN 2014

会议

会议10th IEEE International Conference on Mobile Ad-Hoc and Sensor Networks, MSN 2014
国家/地区美国
Maui
时期19/12/1421/12/14

指纹

探究 'Fault diagnosing ECG in body sensor networks based on hidden markov model' 的科研主题。它们共同构成独一无二的指纹。

引用此