Fast Adaptive Local Subspace Learning With Regressive Regularization

Qiang Chen, Xiaowei Zhao, Feiping Nie, Rong Wang, Xuelong Li

科研成果: 期刊稿件文章同行评审

摘要

Linear Discriminant Analysis (LDA) has been widely used in supervised dimensionality reduction fields. However, LDA is usually weak in tackling data with Non-Gaussian distribution due to its incapability of extracting the intrinsic structure of data. In order to learn the intrinsic information more effectively, some dimensionality reduction methods incorporate the adaptive full-connected graph into the algorithm frame, but the defect is that the calculation of each pairwise distance is very time-consuming. In this letter, we propose a novel fast adaptive local subspace learning with regressive regularization model to solve the supervised dimensional reduction problem. Firstly, the adaptive anchor point graph is used to capture local structure information, which can greatly reduce computation complexity. Secondly, by using regressive regularization, the samples from different classes can be better separated in the projected space and the workload of selecting the optimal reduced dimension is easier. Moreover, entropy regularization is used to derive more appropriate weights. Finally, extensive experiments are conducted on real world data sets to verify the superiority of our model.

源语言英语
页(从-至)1759-1763
页数5
期刊IEEE Signal Processing Letters
29
DOI
出版状态已出版 - 2022

指纹

探究 'Fast Adaptive Local Subspace Learning With Regressive Regularization' 的科研主题。它们共同构成独一无二的指纹。

引用此