TY - JOUR
T1 - Facile strategy for controllable synthesis of hierarchical hollow MoS2 microspheres with enhanced photocatalytic properties
AU - Zhang, Yongxing
AU - Zhao, Yuanyuan
AU - Li, Jia
AU - Li, Li
AU - Liu, Yi
AU - Li, Bing
AU - Li, Dechuan
AU - Li, Xuanhua
N1 - Publisher Copyright:
© 2019 Elsevier B.V.
PY - 2019/5/5
Y1 - 2019/5/5
N2 - Tailored design of photocatalysts with complicated hollow structures is of great importance for promoting environmental remediation. In this paper, monodispersed hierarchical hollow MoS2 microspheres have been prepared via a facile and economical hydrothermal method with the assistance of surfactant (polyethylene-polypropylene glycol (F68)). The unusual design displays three important features: large specific surface area, strong light absorption, and rich catalytic active sites. The specific surface area of the hierarchical hollow MoS2 microspheres is 21.75 m2g-1, which is higher than that of MoS2 particles (4.05 m2g-1) and commercial MoS2 (2.84 m2g-1). Meanwhile, the hierarchical hollow MoS2 microspheres possess strong light absorption around a broadband wavelength from 200 nm to 800 nm. Furthermore, the ordered MoS2 nanosheets which assemble to the outer surface of the hierarchical hollow MoS2 microspheres display rich catalytic active sites, which are beneficial in promoting the fast transport of charge carriers during the process of photocatalytic reaction. As a result, the photodegradation activity test demonstrates that the hierarchical hollow MoS2 microspheres exhibit excellent photocatalytic activity and recycling stability. The reaction rate constant of the hierarchical hollow MoS2 microspheres for the photodegradation of RhB is 25.32 and 18.18 times faster than that of MoS2 particles and commercial MoS2, respectively.
AB - Tailored design of photocatalysts with complicated hollow structures is of great importance for promoting environmental remediation. In this paper, monodispersed hierarchical hollow MoS2 microspheres have been prepared via a facile and economical hydrothermal method with the assistance of surfactant (polyethylene-polypropylene glycol (F68)). The unusual design displays three important features: large specific surface area, strong light absorption, and rich catalytic active sites. The specific surface area of the hierarchical hollow MoS2 microspheres is 21.75 m2g-1, which is higher than that of MoS2 particles (4.05 m2g-1) and commercial MoS2 (2.84 m2g-1). Meanwhile, the hierarchical hollow MoS2 microspheres possess strong light absorption around a broadband wavelength from 200 nm to 800 nm. Furthermore, the ordered MoS2 nanosheets which assemble to the outer surface of the hierarchical hollow MoS2 microspheres display rich catalytic active sites, which are beneficial in promoting the fast transport of charge carriers during the process of photocatalytic reaction. As a result, the photodegradation activity test demonstrates that the hierarchical hollow MoS2 microspheres exhibit excellent photocatalytic activity and recycling stability. The reaction rate constant of the hierarchical hollow MoS2 microspheres for the photodegradation of RhB is 25.32 and 18.18 times faster than that of MoS2 particles and commercial MoS2, respectively.
KW - Broadband absorption
KW - Large surface area
KW - MoS
KW - Photocatalysts
KW - Rich catalytic sites
KW - Unusual design
UR - http://www.scopus.com/inward/record.url?scp=85059676361&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2019.01.051
DO - 10.1016/j.jallcom.2019.01.051
M3 - 文章
AN - SCOPUS:85059676361
SN - 0925-8388
VL - 784
SP - 330
EP - 338
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
ER -