摘要
The development of a low-cost hydrogen evolution reaction (HER) catalyst is crucial for the implementation of hydrogen production via water electrolysis. Herein, a facile and rapid electrodeposition method to synthesize an ultra-low-loading platinum-based catalyst in a short time of 120 s without any other chemical additive is reported. A functionalized nitrogen-doped carbon nanotube (F-N-CNT) is utilized as a carbon support to controllably and effectively anchor the Pt species. With partially oxidized and unzipped, the surface of F-N-CNT is characterized with zig-zag graphene-like nanodomains, which provide enriched deposition sites for Pt species and act as a buffer preventing the agglomeration and overloading of the Pt. Due to rational design of the interfacial chemical environment, the optimized Pt/F-N-CNTs catalyst possesses an ultra-low loading of 1.37 wt% but delivers a prominent HER activity superior to commercial 20 wt% Pt/C. Therefore, this work provides a novel approach to preparing the Pt-based catalyst with outstanding activity and rational loading.
源语言 | 英语 |
---|---|
期刊 | ChemPlusChem |
DOI | |
出版状态 | 已接受/待刊 - 2025 |
已对外发布 | 是 |