摘要
Nanocomposite antifouling coatings have garnered significant attention in marine antifouling technology, primarily due to the integration of anti-fouling additives within antifouling coatings. In this study, silver-based metal azole framework (Ag-2MI) was successfully loaded onto graphene oxide (GO) surface via electrostatic interaction to obtain Ag-2MI/GO nanocomposites, which was used as a filler for hydrogels to obtain the nanocomposite hydrogels (Ag-2MI/GO/hydrogel). The resulting Ag-2MI/GO based hydrogels demonstrated improved mechanical properties and swelling resistance compared to the original hydrogels. Remarkably, the composite exhibited excellent photothermal conversion ability, enabling self-healing capability under near-infrared (NIR) irradiation. This self-healing capability helped to prevent mechanical degradation of the coatings. Furthermore, the Ag-2MI/GO/hydrogel coatings exhibit excellent inhibition of microbial adhesion through a combination of photothermal effect and the slow release of Ag+ and 2MI, achieving over 91 % of bacteria elimination and a 98 % reduction in microalgae attachment.
源语言 | 英语 |
---|---|
文章编号 | 120177 |
期刊 | Carbon |
卷 | 238 |
DOI | |
出版状态 | 已出版 - 5 5月 2025 |