TY - JOUR
T1 - Exploring the role of nanoparticles in enhancing thermal performance of fractional Carreau fluid flow under magnetic field and hall current
AU - Haider, Ali
AU - Anwar, M. S.
AU - Nie, Yufeng
AU - Alqarni, M. S.
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/7
Y1 - 2024/7
N2 - Nanofluids garner significant scientific interest due to their exceptional heat-conducting abilities and potential to enhance heat transfer efficiency. This manuscript investigates the behavior of a two-dimensional fractional Carreau fluid model on a stretched sheet over time, incorporating convection, magnetic fields, nanoparticles, diffusion, and thermal radiations. The model elucidates viscoelastic nanofluids’ memory and inheritance properties, employing non-integer Caputo fractional derivatives innovatively. Fundamental equations are transformed into dimensionless form and solved using an explicit finite difference approach. Essential parameters like Skin friction coefficient, Nusselt number, and Sherwood number are accurately determined. Rigorous stability and convergence criteria ensure effective solution convergence. Visual representations demonstrate the significant impact of each parameter on fluid flow. It is noted that temperature gradient increases 49.38% with the increase of fractional exponent α while it decreases 13.39% with the increase of magnetic parameter M. Moreover, concentration gradient increases 66.48% with the increase of thermophoresis parameter Nt and 94.71% with the increase of pedesis parameter Nb.
AB - Nanofluids garner significant scientific interest due to their exceptional heat-conducting abilities and potential to enhance heat transfer efficiency. This manuscript investigates the behavior of a two-dimensional fractional Carreau fluid model on a stretched sheet over time, incorporating convection, magnetic fields, nanoparticles, diffusion, and thermal radiations. The model elucidates viscoelastic nanofluids’ memory and inheritance properties, employing non-integer Caputo fractional derivatives innovatively. Fundamental equations are transformed into dimensionless form and solved using an explicit finite difference approach. Essential parameters like Skin friction coefficient, Nusselt number, and Sherwood number are accurately determined. Rigorous stability and convergence criteria ensure effective solution convergence. Visual representations demonstrate the significant impact of each parameter on fluid flow. It is noted that temperature gradient increases 49.38% with the increase of fractional exponent α while it decreases 13.39% with the increase of magnetic parameter M. Moreover, concentration gradient increases 66.48% with the increase of thermophoresis parameter Nt and 94.71% with the increase of pedesis parameter Nb.
KW - Explicit finite difference approach
KW - Fractional Carreau fluid model
KW - Nanoparticles
KW - Stretching sheet
UR - http://www.scopus.com/inward/record.url?scp=85193454061&partnerID=8YFLogxK
U2 - 10.1016/j.csite.2024.104537
DO - 10.1016/j.csite.2024.104537
M3 - 文章
AN - SCOPUS:85193454061
SN - 2214-157X
VL - 59
JO - Case Studies in Thermal Engineering
JF - Case Studies in Thermal Engineering
M1 - 104537
ER -