TY - JOUR
T1 - Explore artificial neural networks for solving complex hydrocarbon chemistry in turbulent reactive flows
AU - An, Jian
AU - Qin, Fei
AU - Zhang, Jian
AU - Ren, Zhuyin
N1 - Publisher Copyright:
© 2021
PY - 2022/7
Y1 - 2022/7
N2 - Global warming caused by the use of fossil fuels is a common concern of the world today. It is of practical importance to conduct in-depth fundamental research and optimal design for modern engine combustors through high-fidelity computational fluid dynamics (CFD), so as to achieve energy conservation and emission reduction. However, complex hydrocarbon chemistry, an indispensable component for predictive modeling, is computationally demanding. Its application in simulation-based design optimization, although desirable, is quite limited. To address this challenge, we propose a methodology for representing complex chemistry with artificial neural networks (ANNs), which are trained with a comprehensive sample dataset generated by the Latin hypercube sampling (LHS) method. With a given chemical kinetic mechanism, the thermochemical sample data is able to cover the whole accessible pressure/temperature/species space in various turbulent flames. The ANN-based model consists of two different layers: the self-organizing map (SOM) and the back-propagation neural network (BPNN). The methodology is demonstrated to represent a 30-species methane chemical mechanism. The obtained ANN model is applied to simulate both a non-premixed turbulent flame (DLR_A) and a partially premixed turbulent flame (Flame D) to validate its applicability for different flames. Results show that the ANN-based chemical kinetics can reduce the computational cost by about two orders of magnitude without loss of accuracy. The proposed methodology can successfully construct an ANN-based chemical mechanism with significant efficiency gain and a broad scope of applicability, and thus holds a great potential for complex hydrocarbon fuels.
AB - Global warming caused by the use of fossil fuels is a common concern of the world today. It is of practical importance to conduct in-depth fundamental research and optimal design for modern engine combustors through high-fidelity computational fluid dynamics (CFD), so as to achieve energy conservation and emission reduction. However, complex hydrocarbon chemistry, an indispensable component for predictive modeling, is computationally demanding. Its application in simulation-based design optimization, although desirable, is quite limited. To address this challenge, we propose a methodology for representing complex chemistry with artificial neural networks (ANNs), which are trained with a comprehensive sample dataset generated by the Latin hypercube sampling (LHS) method. With a given chemical kinetic mechanism, the thermochemical sample data is able to cover the whole accessible pressure/temperature/species space in various turbulent flames. The ANN-based model consists of two different layers: the self-organizing map (SOM) and the back-propagation neural network (BPNN). The methodology is demonstrated to represent a 30-species methane chemical mechanism. The obtained ANN model is applied to simulate both a non-premixed turbulent flame (DLR_A) and a partially premixed turbulent flame (Flame D) to validate its applicability for different flames. Results show that the ANN-based chemical kinetics can reduce the computational cost by about two orders of magnitude without loss of accuracy. The proposed methodology can successfully construct an ANN-based chemical mechanism with significant efficiency gain and a broad scope of applicability, and thus holds a great potential for complex hydrocarbon fuels.
KW - Artificial neural network
KW - Chemical kinetics
KW - Machine learning
KW - Numerical simulation
KW - Turbulent combustion
UR - http://www.scopus.com/inward/record.url?scp=85122675117&partnerID=8YFLogxK
U2 - 10.1016/j.fmre.2021.08.007
DO - 10.1016/j.fmre.2021.08.007
M3 - 文章
AN - SCOPUS:85122675117
SN - 2667-3258
VL - 2
SP - 595
EP - 603
JO - Fundamental Research
JF - Fundamental Research
IS - 4
ER -