Experimental study on high temperature performances of silica-based ceramic core for single crystal turbine blades

Zhiping Pan, Jianzheng Guo, Shuangming Li, Jiangying Xiong, Anping Long

科研成果: 期刊稿件文章同行评审

21 引用 (Scopus)

摘要

Silica-based ceramic cores are widely utilized for shaping the internal cooling canals of single crystal superalloy turbine blades. The thermal expansion behavior, creep resistance, and high temperature flexural strength are critical for the quality of turbine blades. In this study, the influence of zircon, particle size distribution, and sintering temperature on the high-temperature performance of silica-based ceramic cores were investigated. The results show that zircon is beneficial for narrowing the contraction temperature range and reducing the shrinkage, improving the creep resistance and high-temperature flexural strength significantly. Mixing coarse, medium and fine fused silica powders in a ratio of 5:3:2, not only reduced high temperature contraction, but effectively improved the creep resistance. Properly increasing the sintering temperature can slightly reduce the thermal deformation and improve the high-temperature flexural strength of the silica-based core, but excessively high sintering temperature negatively impacts the creep resistance and high-temperature flexural strength.

源语言英语
页(从-至)548-555
页数8
期刊Ceramics International
48
1
DOI
出版状态已出版 - 1 1月 2022

指纹

探究 'Experimental study on high temperature performances of silica-based ceramic core for single crystal turbine blades' 的科研主题。它们共同构成独一无二的指纹。

引用此