Experimental study on film cooling effectiveness of blade with chevron-shaped holes under wake influence

Ji Chen Li, Hui Ren Zhu, Cun Liang Liu, Lin Ye, Dao En Zhou

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

Gas turbines have been widely used. With the continuous improvement of the performance of gas turbines, the turbine inlet temperature has greatly exceeded the heat-resistance limit of the turbine blade material, so advanced cooling technology is required. The film cooling effectiveness distribution over the blade under the effect of wake was obtained by the pressure-sensitive paint (PSP) technique. The test blade has five rows of chevron film holes on the pressure side, three rows of cylindrical film holes on the leading edge, and three rows of chevron film holes on the suction side. The mainstream Reynolds number is 130,000 based on the blade chord length, and the mainstream turbulence intensity is 2.7%. The upstream wake was simulated by the spoken-wheel type wake generator. The film cooling effectiveness was measured at three wake Strouhal numbers (0, 0.12, and 0.36) and three mass flux ratios (MFR1, MFR2, and MFR3). The results show that the increase of mass flux ratio leads to a decrease of the film cooling effectiveness on the suction surface. In the wake condition, the effect of mass flux ratio is weakened. Wake leads to a marked decrease of the film cooling effectiveness over most blade surface except for the surface near leading edge on the pressure surface. In the high mass flux ratio condition, the effect of wake on the film cooling effectiveness is weakened on the suction surface and strengthened on the pressure surface.

源语言英语
文章编号081014
期刊Journal of Turbomachinery
143
8
DOI
出版状态已出版 - 8月 2021

指纹

探究 'Experimental study on film cooling effectiveness of blade with chevron-shaped holes under wake influence' 的科研主题。它们共同构成独一无二的指纹。

引用此