Experimental study of heat transfer on the internal surfaces of a double-wall structure with pin fin array

Wei Zhang, Huiren Zhu, Guangchao Li

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)

摘要

The double-wall structure is one of the most effective cooling techniques used in many engineering applications, such as turbine vane/blade, heat exchangers, etc. Heat transfer on the internal surfaces of a double-wall structure was studied at impinging Reynolds numbers ranging from 1 X 104 to 6 X 104 using the transient thermochromic liquid crystal (TLC) technique. The two-dimensional distributions of Nusselt numbers and their averaged values were obtained on the impingement surface, target surface and the pin fin surface. The Nusselt number correlations on the surfaces mentioned above were determined as a function of Reynolds number. The results show that the second peak values of the Nusselt number distribution appear on the target surface at all Reynolds numbers studied in this paper for a short distance of the target surface to impingement surface. This phenomenon becomes significant with the further increase of the Reynolds number. The difference between the Nusselt number at the second peak and the stagnation point decreases with the increasing Reynolds number. The maximal Nusselt number regions on the impingement surface appear at the left and right sides of the pin fins between the two impingement holes. The Nusselt numbers of the pin fin surfaces are highly dependent on their various locations in the double-wall structures. The contributions of the impingement surface, pin fin surface and target surface to the overall heat transfer rate are analyzed. The target surface contributed the largest amount of heat transfer rate with a value of about 62%. The heat transfer contribution is from 18% to 21% for the impingement surface and 16% to 18% for the pin fin surfaces within the studied Reynolds numbers.

源语言英语
文章编号6573
期刊Energies
13
24
DOI
出版状态已出版 - 2 12月 2020

指纹

探究 'Experimental study of heat transfer on the internal surfaces of a double-wall structure with pin fin array' 的科研主题。它们共同构成独一无二的指纹。

引用此