Experimental investigation of the effect of high damping on the VIV energy converter near the free surface

Baoshou Zhang, Boyang Li, Song Fu, Wenjun Ding, Zhaoyong Mao

科研成果: 期刊稿件文章同行评审

19 引用 (Scopus)

摘要

The vortex induced vibration (VIV) energy converter is a novel device to extract hydrokinetic energy from ocean currents. The flow velocity near the sea level is relatively higher, which makes ocean surface currents more exploitable. However, due to the influence from free surface (such as wave impact, etc.), the total system damping of the converter increases rapidly. Therefore, this study focuses on the effect of high damping on the converter near the free surface. The experiments are carried out in a towing tank to measure the VIV responses and energy conversion performance. The VIV energy converter is operated at high damping by changing the load resistor from infinity to 30Ω. Correspondingly, the damping ratio increases from 0.38 to 0.50. The main conclusions are: (1) High damping suppresses the VIV amplitudes. (2) Three typical VIV branches can't be distinguished when at high damping. (3) The VIV frequency increases with damping and approaches the vortex-shedding frequency of a stationary cylinder (Strouhal frequency). (4) When the damping ratio increases from 0.38 to 0.50, the maximum converted power decreases from 1.37W to 0.66W. (5) The optimal efficiency ηVIV = 29% is achieved at the beginning of the VIV region.

源语言英语
文章编号122677
期刊Energy
244
DOI
出版状态已出版 - 1 4月 2022

指纹

探究 'Experimental investigation of the effect of high damping on the VIV energy converter near the free surface' 的科研主题。它们共同构成独一无二的指纹。

引用此