Experimental and numerical investigation of effect of center offset degree on compressor stability with circumferential grooved casing treatment

Hao Guang Zhang, Feng Tan, Yan Hui Wu, Wu Li Chu, Wei Wang, Kang An

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)

摘要

For compressor blade tip stall, one effective way of extending stable operating range is with the application of circumferential grooved casing treatment and its validity was proved by a lot of experimental and numerical investigations. The emphases of most circumferential grooved investigations are focused on the influence of groove depth and groove number on compressor stability, and there is few investigations dealt with the center offset degree of circumferential grooves casing treatment. Hence, an axial compressor rotor with casing treatment(CT) was investigated with experimental and numerical methods to explore the effect of center offset degree on compressor stability and performance. In the work reported here, The center offset degree is defined as the ratio of the central difference between rotor tip axial chord and CT to the axial chord length of rotor tip. When the center of CT is located within the upstream direction of the center of rotor tip axial chord, the value of center offset degree is positive. The experimental and numerical results show that stall margin improvement gained with CT is reduced as the value of center offset degree varies from 0 to 0.33 or -0.33, and the CT with -0.33 center offset degree achieves the lowest value of stall margin improvement at 53% and 73% design rotational speed. The detailed analysis of the flow-field in compressor tip indicates that there is not positive effect made by grooves on leading edge of rotor blade tip when the value of center offset degree is -0.33. As the mass flow of compressor reduces further, tip clearance leakage flow results in the outlet blockage due to the absence of the positive action of grooves near blade tip tail when the value of center offset degree is 0.33. Blockage does not appear in rotor tip passage owing to utilizing the function of all grooves with CT of 0 center offset degree.

源语言英语
主期刊名Turbomachinery
出版商American Society of Mechanical Engineers (ASME)
ISBN(电子版)9780791849699
DOI
出版状态已出版 - 2016
活动ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, GT 2016 - Seoul, 韩国
期限: 13 6月 201617 6月 2016

出版系列

姓名Proceedings of the ASME Turbo Expo
2A-2016

会议

会议ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, GT 2016
国家/地区韩国
Seoul
时期13/06/1617/06/16

指纹

探究 'Experimental and numerical investigation of effect of center offset degree on compressor stability with circumferential grooved casing treatment' 的科研主题。它们共同构成独一无二的指纹。

引用此