摘要
The demand for tribocorrosion-resistant equipment has driven extensive research into advanced materials. Utilizing electrochemical measurements and density-functional theory (DFT) calculations, this study systematically elucidates nitrogen alloying's role in enhancing tribocorrosion resistance of VCoNi MPEAs in artificial seawater. The results demonstrate that increasing N enhances VCoNiN's tribocorrosion performance due to stronger nitrogen-metal bonding, which leads to a decrease in the electronic work function, and competitive adsorption between O and Cl. Specifically, N-alloying strengthens O bonding while reducing the detrimental effects of Cl adsorption. This work provides novel insights into optimizing the tribocorrosion resistance of MPEAs by clarifying the critical role of N in modifying the electronic structure.
源语言 | 英语 |
---|---|
文章编号 | 112600 |
期刊 | Corrosion Science |
卷 | 243 |
DOI | |
出版状态 | 已出版 - 2月 2025 |