TY - JOUR
T1 - Enhancing Secure MIMO Transmission via Intelligent Reflecting Surface
AU - Dong, Limeng
AU - Wang, Hui Ming
N1 - Publisher Copyright:
© 2002-2012 IEEE.
PY - 2020/11
Y1 - 2020/11
N2 - In this article, we consider an intelligent reflecting surface (IRS) assisted Guassian multiple-input multiple-output (MIMO) wiretap channel (WTC), and focus on enhancing its secrecy rate. Due to MIMO setting, all the existing solutions for enhancing the secrecy rate over multiple-input single-output WTC completely fall to this work. Furthermore, all the existing studies are simply based on an ideal assumption that full channel state information (CSI) of eavesdropper (Ev) is available. Therefore, we propose numerical solutions to enhance the secrecy rate of this channel under both full and no Ev's CSI cases. For the full CSI case, we propose a barrier method and one-by-one (OBO) optimization combined alternating optimization (AO) algorithm to jointly optimize the transmit covariance R at transmitter (Tx) and phase shift coefficient Q at IRS. For the case of no Ev's CSI, we develop an artificial noise (AN) aided joint transmission scheme to enhance the secrecy rate. In this scheme, a bisection search (BS) and OBO optimization combined AO algorithm is proposed to jointly optimize R and Q. Such scheme is also applied to enhance the secrecy rate under a special scenario in which the direct link between Tx and receiver (Rx)/Ev is blocked due to obstacles. In particular, we propose a BS and minorization-maximization (MM) combined AO algorithm with slightly faster convergence to optimize R and Q for this scenario. Simulation results have validated the monotonic convergence of the proposed algorithms, and it is shown that the proposed algorithms for the IRS-assisted design achieve significantly larger secrecy rate than the other benchmark schemes under full CSI. When Ev's CSI is unknown, the secrecy performance of this channel also can be enhanced by the proposed AN aided scheme, and there is a trade-off between increasing the quality of service at Rx and enhancing the secrecy rate.
AB - In this article, we consider an intelligent reflecting surface (IRS) assisted Guassian multiple-input multiple-output (MIMO) wiretap channel (WTC), and focus on enhancing its secrecy rate. Due to MIMO setting, all the existing solutions for enhancing the secrecy rate over multiple-input single-output WTC completely fall to this work. Furthermore, all the existing studies are simply based on an ideal assumption that full channel state information (CSI) of eavesdropper (Ev) is available. Therefore, we propose numerical solutions to enhance the secrecy rate of this channel under both full and no Ev's CSI cases. For the full CSI case, we propose a barrier method and one-by-one (OBO) optimization combined alternating optimization (AO) algorithm to jointly optimize the transmit covariance R at transmitter (Tx) and phase shift coefficient Q at IRS. For the case of no Ev's CSI, we develop an artificial noise (AN) aided joint transmission scheme to enhance the secrecy rate. In this scheme, a bisection search (BS) and OBO optimization combined AO algorithm is proposed to jointly optimize R and Q. Such scheme is also applied to enhance the secrecy rate under a special scenario in which the direct link between Tx and receiver (Rx)/Ev is blocked due to obstacles. In particular, we propose a BS and minorization-maximization (MM) combined AO algorithm with slightly faster convergence to optimize R and Q for this scenario. Simulation results have validated the monotonic convergence of the proposed algorithms, and it is shown that the proposed algorithms for the IRS-assisted design achieve significantly larger secrecy rate than the other benchmark schemes under full CSI. When Ev's CSI is unknown, the secrecy performance of this channel also can be enhanced by the proposed AN aided scheme, and there is a trade-off between increasing the quality of service at Rx and enhancing the secrecy rate.
KW - CSI
KW - Intelligent reflecting surface
KW - MIMO
KW - artificial noise
KW - secrecy rate
UR - http://www.scopus.com/inward/record.url?scp=85096243423&partnerID=8YFLogxK
U2 - 10.1109/TWC.2020.3012721
DO - 10.1109/TWC.2020.3012721
M3 - 文章
AN - SCOPUS:85096243423
SN - 1536-1276
VL - 19
SP - 7543
EP - 7556
JO - IEEE Transactions on Wireless Communications
JF - IEEE Transactions on Wireless Communications
IS - 11
M1 - 9159923
ER -