Enhancing hydrolysis resistance and thermal conductivity of aluminum nitride/polysiloxane composites via block copolymer-modification

Yongqiang Guo, Lei Zhang, Kunpeng Ruan, Yi Mu, Mukun He, Junwei Gu

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

The preparation of thermally conductive silicone rubber composites incorporating aluminum nitride (AlN) as fillers has attracted considerable attention. However, the high susceptibility of AlN to hydrolysis and its limited compatibility with the silicone rubber matrix present significant challenges that hinder the enhancement of the composite's thermal conductivity. In this work, AlN was modified through surface functionalization via grafting with divinylbenzene-acryloyl chloride block copolymer (PDVB-b-PACl), followed by compounding with poly(methylhydrosiloxane) (PMHS) to fabricate thermally conductive AlN@PDVB-b-PACl/PMHS composites. The modification significantly improved the hydrophobicity of AlN@PDVB-b-PACl, as demonstrated by a contact angle of 134.1°compared to 26.4° for unmodified AlN. When the molecular weight of PDVB-b-PACl is 5000 g/mol, the grafting amount is 0.8 wt%, and the loading of AlN@PDVB-b-PACl is 85 wt%, the AlN@PDVB-b-PACl/PMHS composite exhibited an optimal thermal conductivity of 1.82 W/(m·K), an 810 % improvement over that of PMHS (0.20 W/(m·K)), and outperformed AlN/PMHS composites (1.58 W/(m·K)) with the same AlN loading. Additionally, the tensile strength of the composite was 0.58 MPa, approximately 2.4 times greater than that of PMHS (0.24 MPa).

源语言英语
文章编号128189
期刊Polymer
323
DOI
出版状态已出版 - 10 4月 2025

指纹

探究 'Enhancing hydrolysis resistance and thermal conductivity of aluminum nitride/polysiloxane composites via block copolymer-modification' 的科研主题。它们共同构成独一无二的指纹。

引用此