TY - GEN
T1 - Emergence of Punishment in Social Dilemma with Environmental Feedback
AU - Wang, Zhen
AU - Song, Zhao
AU - Shen, Chen
AU - Hu, Shuyue
N1 - Publisher Copyright:
Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2023/6/27
Y1 - 2023/6/27
N2 - Altruistic punishment (or punishment) has been extensively shown as an important mechanism for promoting cooperation in human societies. In AI, the emergence of punishment has received much recent interest. In this paper, we contribute with a novel evolutionary game theoretic model to study the impacts of environmental feedback. Whereas a population of agents plays public goods games, there exists a third-party population whose payoffs depend not only on whether to punish or not, but also on the state of the environment (e.g., how cooperative the agents in a social dilemma are). Focusing on one-shot public goods games, we show that environmental feedback, by itself, can lead to the emergence of punishment. We analyze the co-evolution of punishment and cooperation, and derive conditions for their co-presence, co-dominance and co-extinction. Moreover, we show that the system can exhibit bistability as well as cyclic dynamics. Our findings provide a new explanation for the emergence of punishment. On the other hand, our results also alert the need for careful design of implementing punishment in multi-agent systems, as the resulting evolutionary dynamics can be somewhat complex.
AB - Altruistic punishment (or punishment) has been extensively shown as an important mechanism for promoting cooperation in human societies. In AI, the emergence of punishment has received much recent interest. In this paper, we contribute with a novel evolutionary game theoretic model to study the impacts of environmental feedback. Whereas a population of agents plays public goods games, there exists a third-party population whose payoffs depend not only on whether to punish or not, but also on the state of the environment (e.g., how cooperative the agents in a social dilemma are). Focusing on one-shot public goods games, we show that environmental feedback, by itself, can lead to the emergence of punishment. We analyze the co-evolution of punishment and cooperation, and derive conditions for their co-presence, co-dominance and co-extinction. Moreover, we show that the system can exhibit bistability as well as cyclic dynamics. Our findings provide a new explanation for the emergence of punishment. On the other hand, our results also alert the need for careful design of implementing punishment in multi-agent systems, as the resulting evolutionary dynamics can be somewhat complex.
UR - http://www.scopus.com/inward/record.url?scp=85166960676&partnerID=8YFLogxK
U2 - 10.1609/aaai.v37i10.2636126383
DO - 10.1609/aaai.v37i10.2636126383
M3 - 会议稿件
AN - SCOPUS:85166960676
T3 - Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
SP - 11708
EP - 11716
BT - AAAI-23 Technical Tracks 10
A2 - Williams, Brian
A2 - Chen, Yiling
A2 - Neville, Jennifer
PB - AAAI press
T2 - 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Y2 - 7 February 2023 through 14 February 2023
ER -