Embracing Disease Progression with a Learning System for Real World Evidence Discovery

Zefang Tang, Lun Hu, Xu Min, Yuan Zhang, Jing Mei, Kenney Ng, Shaochun Li, Pengwei Hu, Zhuhong You

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Electronic Health Records (EHRs) have been widely used in healthcare studies recently, such as the analyses for patient diagnostic outcome and understanding of disease progression. EHR is a treasure for researchers who conduct the Real-World study to discovering Real-World Evidence (RWE). In this paper, we design an end-to-end learning system for disease states discovery based on a data-driven strategy. A large-scale proprietary EHR data mart containing about 55 million patients with over 20 billion data records is used for data extraction and analysis. Given a disease of interest, researchers could easily obtain the hidden disease states. Once our system were operational, biomedical researchers could get the results for downstream analyses such as disease prediction, drug design and outcome analyses.

源语言英语
主期刊名Intelligent Computing Theories and Application - 16th International Conference, ICIC 2020, Proceedings
编辑De-Shuang Huang, Kang-Hyun Jo
出版商Springer Science and Business Media Deutschland GmbH
524-534
页数11
ISBN(印刷版)9783030608019
DOI
出版状态已出版 - 2020
已对外发布
活动16th International Conference on Intelligent Computing, ICIC 2020 - Bari , 意大利
期限: 2 10月 20205 10月 2020

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12464 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议16th International Conference on Intelligent Computing, ICIC 2020
国家/地区意大利
Bari
时期2/10/205/10/20

指纹

探究 'Embracing Disease Progression with a Learning System for Real World Evidence Discovery' 的科研主题。它们共同构成独一无二的指纹。

引用此