摘要
Symmetric embedded waveguides were fabricated in heavy metal oxide SF10 glass using slit-shaped infrared femtosecond laser writing in the low-repetition frequency regime. The impact of the writing parameters on the waveguide formation in the transverse writing scheme was systemically studied. Results indicate that efficient waveguides can be inscribed in a wide parameter space ranging from 500 fs to 1.5 ps pulse duration, 0.7-4.2 μJ pulse energy, and 5 μm/s to 640 μm/s scan speed and pointing out the robustness of the photoinscription process. The refractive index profile reconstructed from the measured near field pattern goes up to 10-3. In addition, propagation losses of the waveguides are tolerable, with the lowest propagation loss estimated at 0.7 dB/cm. With a 5 μm/s scan speed and 3.5 μJ pulse energy in a high-dose regime, few-mode guiding was achieved in the waveguide at 800 nm signal injection wavelength. This is due to a combination of increased refractive index in the core of the trace and the appearance of a depressed cladding.
源语言 | 英语 |
---|---|
页(从-至) | 7288-7294 |
页数 | 7 |
期刊 | Applied Optics |
卷 | 52 |
期 | 30 |
DOI | |
出版状态 | 已出版 - 20 10月 2013 |
已对外发布 | 是 |