摘要
Rational design of optimal bifunctional oxygen electrocatalyst with low cost and high activity is greatly desired for realization of rechargeable Zn-air batteries. Herein, we fabricate mesoporous thin-walled CuCo2O4@C with abundant nitrogen-doped nanotubes via coaxial electrospinning technique. Benefiting from high catalytic activity of ultrasmall CuCo2O4 particles, double active specific surface area of mesoporous nanotubes, and strong coupling with N-doped carbon matrix, the obtained CuCo2O4@C exhibits outstanding oxygen electrocatalytic activity and stability, in terms of a positive onset potential (0.951 V) for oxygen reduction reaction (ORR) and a low overpotential (327 mV at 10 mA cm-2) for oxygen evolution reaction (OER). Significantly, when used as cathode catalyst for Zn-air batteries, CuCo2O4@C also displays a low charge-discharge voltage gap (0.79 V at 10 mA cm-2) and a long cycling life (up to 160 cycles for 80 h). With desirable architecture and excellent electrocatalytic properties, the CuCo2O4@C is considered a promising electrocatalyst for Zn-air batteries.
源语言 | 英语 |
---|---|
页(从-至) | 7989-7994 |
页数 | 6 |
期刊 | Nano Letters |
卷 | 17 |
期 | 12 |
DOI | |
出版状态 | 已出版 - 13 12月 2017 |
已对外发布 | 是 |