TY - JOUR
T1 - Electrospun heparin-loaded nano-fiber sutures for the amelioration of achilles tendon rupture regeneration:: In vivo evaluation
AU - Ye, Yajing
AU - Zhou, Yaqing
AU - Jing, Zhuoyuan
AU - Xu, Yifan
AU - Yin, Dachuan
N1 - Publisher Copyright:
© The Royal Society of Chemistry.
PY - 2021/5/28
Y1 - 2021/5/28
N2 - Peritendinous blood circulation improvement is a challenge to promote the healing of ruptured tendons in clinical treatment. Although electrospun membranes or scaffolds enable the reduction of complications such as adhesion, however, low efficiency, toxicity issues, the loss of biological activity, and complex electrospinning techniques are all bottlenecks of these systems. Improving the blood supply is crucial for their successful use, which involves promoting the metabolism and nutrient absorption in tendons. Here, a multifunctional, structurally simple strategy involving heparin-loaded sutures (PPH) that are clinically applicable is reported, in the form of electrospun core-shell nanofibers, with the ability to perform sustained release of anticoagulants heparin (verified in our previous publication) for the improvement of the healing of Achilles tendon. The morphology and diameter distribution of the collagen fiber in the PPH group are closely related to the health of the Achilles tendon than those of commercial sutures (CS). The in vivo results of the total collagen content and the expression of collagen type I in the PPH group are more than those of the CS group. After 6 weeks of culture, the tensile strength of the PPH group shows no significant difference compared to the healthy group. The data obtained in this study improves the current understanding on the regeneration of ruptured tendons and presents a promising strategy for clinical treatment.
AB - Peritendinous blood circulation improvement is a challenge to promote the healing of ruptured tendons in clinical treatment. Although electrospun membranes or scaffolds enable the reduction of complications such as adhesion, however, low efficiency, toxicity issues, the loss of biological activity, and complex electrospinning techniques are all bottlenecks of these systems. Improving the blood supply is crucial for their successful use, which involves promoting the metabolism and nutrient absorption in tendons. Here, a multifunctional, structurally simple strategy involving heparin-loaded sutures (PPH) that are clinically applicable is reported, in the form of electrospun core-shell nanofibers, with the ability to perform sustained release of anticoagulants heparin (verified in our previous publication) for the improvement of the healing of Achilles tendon. The morphology and diameter distribution of the collagen fiber in the PPH group are closely related to the health of the Achilles tendon than those of commercial sutures (CS). The in vivo results of the total collagen content and the expression of collagen type I in the PPH group are more than those of the CS group. After 6 weeks of culture, the tensile strength of the PPH group shows no significant difference compared to the healthy group. The data obtained in this study improves the current understanding on the regeneration of ruptured tendons and presents a promising strategy for clinical treatment.
UR - http://www.scopus.com/inward/record.url?scp=85106699507&partnerID=8YFLogxK
U2 - 10.1039/d1tb00162k
DO - 10.1039/d1tb00162k
M3 - 文章
C2 - 33982044
AN - SCOPUS:85106699507
SN - 2050-750X
VL - 9
SP - 4154
EP - 4168
JO - Journal of Materials Chemistry B
JF - Journal of Materials Chemistry B
IS - 20
ER -