TY - JOUR
T1 - Electrocatalytic CO2 Reduction Empowered by 2D Hexagonal Transition Metal Borides
AU - Di, Yaxin
AU - Wang, Zhiqi
AU - Wang, Guangqiu
AU - Wang, Junjie
N1 - Publisher Copyright:
© 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH.
PY - 2025
Y1 - 2025
N2 - Electrocatalysis holds immense promise for producing high-value chemicals and fuels through the carbon dioxide reduction reaction (CO2RR), advancing global sustainability and carbon neutrality. However, conventional electrocatalysts based on transition metals are often limited by significant overpotentials. Since the discovery of the first hexagonal MAB (h-MAB) phase, Ti2InB2, and its 2D derivative in 2019, 2D hexagonal transition metal borides (h-MBenes) have emerged as promising candidates for various electrochemical applications. This study presents the first theoretical investigation into the CO2RR catalytic properties of pristine h-MBenes (h-MB) and their ─O (h-MBO) and ─OH (h-MBOH) terminated counterparts, focusing on metals such as Sc, Ti, V, Zr, Nb, Hf, and Ta. These results reveal while h-MB and h-MBO exhibit poor catalytic performance due to overly strong or weak interactions with CO2, h-MBOH shows great promise. Notably, ScBOH, TiBOH, and ZrBOH display exceptionally low limiting potentials (UL) of −0.46, −0.53, and −0.64 V, respectively. These findings uncover the unique role of ─OH in tuning the electronic properties of h-MBenes, thereby optimizing intermediate adsorption, which prevents excessive binding and enhances catalytic efficiency. This research offers valuable insights into the potential of h-MBenes as highly efficient CO2RR catalysts, underscoring their versatility and significant prospects for electrochemical applications.
AB - Electrocatalysis holds immense promise for producing high-value chemicals and fuels through the carbon dioxide reduction reaction (CO2RR), advancing global sustainability and carbon neutrality. However, conventional electrocatalysts based on transition metals are often limited by significant overpotentials. Since the discovery of the first hexagonal MAB (h-MAB) phase, Ti2InB2, and its 2D derivative in 2019, 2D hexagonal transition metal borides (h-MBenes) have emerged as promising candidates for various electrochemical applications. This study presents the first theoretical investigation into the CO2RR catalytic properties of pristine h-MBenes (h-MB) and their ─O (h-MBO) and ─OH (h-MBOH) terminated counterparts, focusing on metals such as Sc, Ti, V, Zr, Nb, Hf, and Ta. These results reveal while h-MB and h-MBO exhibit poor catalytic performance due to overly strong or weak interactions with CO2, h-MBOH shows great promise. Notably, ScBOH, TiBOH, and ZrBOH display exceptionally low limiting potentials (UL) of −0.46, −0.53, and −0.64 V, respectively. These findings uncover the unique role of ─OH in tuning the electronic properties of h-MBenes, thereby optimizing intermediate adsorption, which prevents excessive binding and enhances catalytic efficiency. This research offers valuable insights into the potential of h-MBenes as highly efficient CO2RR catalysts, underscoring their versatility and significant prospects for electrochemical applications.
KW - electrochemical CO reduction reaction
KW - first principles
KW - functional groups
KW - h-MBenes
UR - http://www.scopus.com/inward/record.url?scp=105001803200&partnerID=8YFLogxK
U2 - 10.1002/advs.202500977
DO - 10.1002/advs.202500977
M3 - 文章
AN - SCOPUS:105001803200
SN - 2198-3844
JO - Advanced Science
JF - Advanced Science
ER -