Efficient Top-K Feature Selection Using Coordinate Descent Method

Lei Xu, Rong Wang, Feiping Nie, Xuelong Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

10 引用 (Scopus)

摘要

Sparse learning based feature selection has been widely investigated in recent years. In this study, we focus on the l2,0-norm based feature selection, which is effective for exact top-k feature selection but challenging to optimize. To solve the general l2,0-norm constrained problems, we novelly develop a parameter-free optimization framework based on the coordinate descend (CD) method, termed CD-LSR. Specifically, we devise a skillful conversion from the original problem to solving one continuous matrix and one discrete selection matrix. Then the nontrivial l2,0-norm constraint can be solved efficiently by solving the selection matrix with CD method. We impose the l2,0-norm on a vanilla least square regression (LSR) model for feature selection and optimize it with CD-LSR. Extensive experiments exhibit the efficiency of CD-LSR, as well as the discrimination ability of l2,0-norm to identify informative features. More importantly, the versatility of CD-LSR facilitates the applications of the l2,0-norm in more sophisticated models. Based on the competitive performance of l2,0-norm on the baseline LSR model, the satisfactory performance of its applications is reasonably expected. The source MATLAB code are available at: https://github.com/solerxl/Code For AAAI 2023.

源语言英语
主期刊名AAAI-23 Technical Tracks 9
编辑Brian Williams, Yiling Chen, Jennifer Neville
出版商AAAI press
10594-10601
页数8
ISBN(电子版)9781577358800
DOI
出版状态已出版 - 27 6月 2023
活动37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, 美国
期限: 7 2月 202314 2月 2023

出版系列

姓名Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
37

会议

会议37th AAAI Conference on Artificial Intelligence, AAAI 2023
国家/地区美国
Washington
时期7/02/2314/02/23

指纹

探究 'Efficient Top-K Feature Selection Using Coordinate Descent Method' 的科研主题。它们共同构成独一无二的指纹。

引用此