Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving Object Segmentation

Jiadai Sun, Yuchao Dai, Xianjing Zhang, Jintao Xu, Rui Ai, Weihao Gu, Xieyuanli Chen

科研成果: 书/报告/会议事项章节会议稿件同行评审

69 引用 (Scopus)

摘要

Accurate moving object segmentation is an es-sential task for autonomous driving. It can provide effective information for many downstream tasks, such as collision avoidance, path planning, and static map construction. How to effectively exploit the spatial-temporal information is a critical question for 3D LiDAR moving object segmentation (LiDAR-MOS). In this work, we propose a novel deep neural network exploiting both spatial-temporal information and different representation modalities of LiDAR scans to improve LiDAR-MOS performance. Specifically, we first use a range image-based dual-branch structure to separately deal with spatial and temporal information that can be obtained from sequential LiDAR scans, and later combine them using motion-guided attention modules. We also use a point refinement module via 3D sparse convolution to fuse the information from both LiDAR range image and point cloud representations and reduce the artifacts on the borders of the objects. We verify the effectiveness of our proposed approach on the LiDAR-MOS benchmark of SemanticKITTI. Our method outperforms the state-of-the-art methods significantly in terms of LiDAR-MOS IoU. Benefiting from the devised coarse-to-fine architecture, our method operates online at sensor frame rate. Code is available at: https://github.com/haomo-ai/MotionSeg3D.

源语言英语
主期刊名IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
出版商Institute of Electrical and Electronics Engineers Inc.
11456-11463
页数8
ISBN(电子版)9781665479271
DOI
出版状态已出版 - 2022
活动2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022 - Kyoto, 日本
期限: 23 10月 202227 10月 2022

出版系列

姓名IEEE International Conference on Intelligent Robots and Systems
2022-October
ISSN(印刷版)2153-0858
ISSN(电子版)2153-0866

会议

会议2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2022
国家/地区日本
Kyoto
时期23/10/2227/10/22

指纹

探究 'Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving Object Segmentation' 的科研主题。它们共同构成独一无二的指纹。

引用此