Efficient LiDAR Point Cloud Oversegmentation Network

Le Hui, Linghua Tang, Yuchao Dai, Jin Xie, Jian Yang

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Point cloud oversegmentation is a challenging task since it needs to produce perceptually meaningful partitions (i.e., superpoints) of a point cloud. Most existing oversegmentation methods cannot efficiently generate superpoints from large-scale LiDAR point clouds due to complex and inefficient procedures. In this paper, we propose a simple yet efficient end-to-end LiDAR oversegmentation network, which segments superpoints from the LiDAR point cloud by grouping points based on low-level point embeddings. Specifically, we first learn the similarity of points from the constructed local neighborhoods to obtain low-level point embeddings through the local discriminative loss. Then, to generate homogeneous superpoints from the sparse LiDAR point cloud, we propose a LiDAR point grouping algorithm that simultaneously considers the similarity of point embeddings and the Euclidean distance of points in 3D space. Finally, we design a superpoint refinement module for accurately assigning the hard boundary points to the corresponding superpoints. Extensive results on two large-scale outdoor datasets, SemanticKITTI and nuScenes, show that our method achieves a new state-of-the-art in LiDAR oversegmentation. Notably, the inference time of our method is 100× faster than that of other methods. Furthermore, we apply the learned superpoints to the LiDAR semantic segmentation task and the results show that using superpoints can significantly improve the LiDAR semantic segmentation of the baseline network. Code is available at https://github.com/fpthink/SuperLiDAR.

源语言英语
主期刊名Proceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
出版商Institute of Electrical and Electronics Engineers Inc.
17957-17966
页数10
ISBN(电子版)9798350307184
DOI
出版状态已出版 - 2023
活动2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, 法国
期限: 2 10月 20236 10月 2023

出版系列

姓名Proceedings of the IEEE International Conference on Computer Vision
ISSN(印刷版)1550-5499

会议

会议2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
国家/地区法国
Paris
时期2/10/236/10/23

指纹

探究 'Efficient LiDAR Point Cloud Oversegmentation Network' 的科研主题。它们共同构成独一无二的指纹。

引用此