EFFICIENT CONTENT RECONSTRUCTION FOR HIGH DYNAMIC RANGE IMAGING

Xiang Zhang, Tao Hu, Jiashuang He, Qingsen Yan

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

High Dynamic Range (HDR) images can be reconstructed from multiple Low Dynamic Range (LDR) images using existing deep neural network (DNN) techniques. Despite notable advancements, DNN-based methods still exhibit ghosting artifacts when handling LDR images with saturation and significant motion. Recent Diffusion models (DMs) have been introduced in HDR imaging, showcasing promising performance, especially in achieving visually perceptible results. However, DMs typically require numerous inference iterations to recover the clean image from Gaussian noise, demanding substantial computational resources. Additionally, DM only learns a probability distribution of the added noise in each step but neglects image space constraints on HDR images, limiting distortion-based metrics. To tackle these challenges, we propose an efficient network that integrates DM modules into existing regression-based models, providing reliable content reconstruction for HDR while avoiding limitations in distortion-based metrics.

源语言英语
主期刊名2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
7660-7664
页数5
ISBN(电子版)9798350344851
DOI
出版状态已出版 - 2024
活动2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 - Seoul, 韩国
期限: 14 4月 202419 4月 2024

出版系列

姓名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN(印刷版)1520-6149

会议

会议2024 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024
国家/地区韩国
Seoul
时期14/04/2419/04/24

指纹

探究 'EFFICIENT CONTENT RECONSTRUCTION FOR HIGH DYNAMIC RANGE IMAGING' 的科研主题。它们共同构成独一无二的指纹。

引用此