摘要
Flexible white top-emitting organic light-emitting diodes (WTEOLEDs) with red and blue phosphorescent dual-emitting layers were fabricated onto polyethylene terephthalate (PET) substrates. By inserting a 2-nm thin tris(phenypyrazole)iridium between the red and the blue emitters as an electron/exciton blocking layer, significant improvements on luminous efficiency and color stability were observed, reaching 9.9 cd/A (3.74 lm/W) and a small chromaticity change of (0.019, 0.011) in a wide luminance range of 80-5160 cd/m2. The origin on color stability was explored by analyzing the electroluminescent spectra, the time-resolved transient photoluminescence decay lifetimes of phosphors, and the tunneling phenomenon. In addition, mechanical bending lifetimes in WTEOLEDs with spin-coated polymethylmethacrylate (PMMA) and thermally evaporated MoOx onto the PETs were respectively measured, where PMMA or MoOx is used as a surface planarization layer. Analysis indicates that the poorer lifetime of PMMA-modified WTEOLED than the MoO x-modified ones is mainly due to the low surface energy of PMMA.
源语言 | 英语 |
---|---|
页(从-至) | 3037-3045 |
页数 | 9 |
期刊 | Organic Electronics |
卷 | 14 |
期 | 11 |
DOI | |
出版状态 | 已出版 - 2013 |
已对外发布 | 是 |