Effects of subgrain size and static recrystallization on the mechanical performance of polycrystalline material: A microstructure-based crystal plasticity finite element analysis

Fengbo Han, Bin Tang, Hongchao Kou, Jinshan Li, Yong Feng

科研成果: 期刊稿件文章同行评审

9 引用 (Scopus)

摘要

In this paper, the effects of subgrain size and static recrystallization on the mechanical performance of polycrystalline material were investigated using a microstructure-based crystal plasticity finite element (CPFE) model. Firstly, polycrystalline microstructures with different mean subgrain sizes were prepared using simple assumption based on experimental observations, and intermediate microstructures during static recrystallization (SRX) were simulated by a cellular automata model adopting curvature driven grain/subgrain growth mechanism. Then, CPFE method was applied to perform stress analysis of plane strain tension on these virtual microstructures. The results show that the subgrains inside pre-existing grains have an effect on the heterogeneity of the stress distributions. The average stress decreases with increasing the mean subgrain radius. As grain/subgrain grows during SRX, the average stress also decreases. It can be deduced that well-defined and finer subgrain structure may strengthen the polycrystalline material, while grain/subgrain growth during SRX process will degrade the strength.

源语言英语
页(从-至)58-65
页数8
期刊Progress in Natural Science: Materials International
25
1
DOI
出版状态已出版 - 2015

指纹

探究 'Effects of subgrain size and static recrystallization on the mechanical performance of polycrystalline material: A microstructure-based crystal plasticity finite element analysis' 的科研主题。它们共同构成独一无二的指纹。

引用此