Effects of laser power on the microstructural evolution of novel Ti–6Zr–5Fe alloy fabricated by selective laser melting

Peng Qi, Bolong Li, Wu Wei, Jimin Chen, Tongbo Wang, Hui Huang, Kunyuan Gao, Shengping Wen, Xiaolan Wu, Li Rong, Wenjun Wu, Lian Zhou, Zuoren Nie

科研成果: 期刊稿件文章同行评审

5 引用 (Scopus)

摘要

This work aims to study the influence of laser power on the microstructural evolution of novel Ti–6Zr–5Fe alloy fabricated by selective laser melting (SLM). The microstructural evolutions of all top surfaces in SLM Ti–6Zr–5Fe alloy samples fabricated from 80 W to 140 W were investigated in depth. The microstructure in SLM Ti–6Zr–5Fe alloy includes α phase and β phase, the size of the β phase and α phase increases with the increase of laser power due to the decrease of cooling rate. Meanwhile, the melt pool overlapping width increases with the increase of melt pool width due to the increase of laser power. The increase of melt pool overlapping causes the re-heating or re-melting of SLM Ti–6Zr–5Fe alloy. Moreover, as the laser power increases from 80 W to 140 W, the change of the melt pool greatly influenced the size, morphology, crystallographic orientation of the β phase, and their distributions. The increase of laser power causes adequate precipitation of the α phase, which improves the microhardness from 466 HV to 533 HV. The laser power can effectively regulate and control the microstructure and microhardness of SLM Ti alloys.

源语言英语
页(从-至)5108-5118
页数11
期刊Journal of Materials Research and Technology
24
DOI
出版状态已出版 - 1 5月 2023
已对外发布

指纹

探究 'Effects of laser power on the microstructural evolution of novel Ti–6Zr–5Fe alloy fabricated by selective laser melting' 的科研主题。它们共同构成独一无二的指纹。

引用此