TY - GEN
T1 - Effective variation analysis model for the riveting press process of a flush rivet
AU - Zhang, Jun
AU - Li, Yuan
AU - Cheng, Hui
AU - Zhang, Kaifu
PY - 2012
Y1 - 2012
N2 - Most of the fatigue damage in aircraft structures can be linked to the stress concentration arising at the rivet joints. Interference-fit riveting of a flush rivet can form the uniform interference fit. Thanks to the uniform interference fit, large stress concentration can be avoided. The radial deformation, which is directly relative to interference fit, is therefore of prime importance. Parameters associated with a riveting process that directly affect the quality of rivets must be taken into account to observe the effect on radial deformation at rivet holes. This paper presents an effective variation analysis to calculate radial deformation at rivet holes by assuming that the axial stresses are constant both along the axial and radius of the rivet slug. Firstly, the rivet process model is built before variation analysis. Secondly, theoretical relationships between radial deformations and contact loads are proposed using elasto-plastic analysis. Later, the expressions of the contact loads are given according to geometrical relationships and analysis of deforming forces. Thirdly, an instance made up of the rivet, top sheet and bottom sheet is used to verify the analysis model. The model paves an efficient way to study the deforming law of the riveting press process and build the pre-estimate model of the rivet deformations and the parameter optimization model.
AB - Most of the fatigue damage in aircraft structures can be linked to the stress concentration arising at the rivet joints. Interference-fit riveting of a flush rivet can form the uniform interference fit. Thanks to the uniform interference fit, large stress concentration can be avoided. The radial deformation, which is directly relative to interference fit, is therefore of prime importance. Parameters associated with a riveting process that directly affect the quality of rivets must be taken into account to observe the effect on radial deformation at rivet holes. This paper presents an effective variation analysis to calculate radial deformation at rivet holes by assuming that the axial stresses are constant both along the axial and radius of the rivet slug. Firstly, the rivet process model is built before variation analysis. Secondly, theoretical relationships between radial deformations and contact loads are proposed using elasto-plastic analysis. Later, the expressions of the contact loads are given according to geometrical relationships and analysis of deforming forces. Thirdly, an instance made up of the rivet, top sheet and bottom sheet is used to verify the analysis model. The model paves an efficient way to study the deforming law of the riveting press process and build the pre-estimate model of the rivet deformations and the parameter optimization model.
KW - Flush rivet
KW - Radial deformation
KW - The riveting press process
UR - http://www.scopus.com/inward/record.url?scp=83755163835&partnerID=8YFLogxK
U2 - 10.4028/www.scientific.net/AMR.383-390.6762
DO - 10.4028/www.scientific.net/AMR.383-390.6762
M3 - 会议稿件
AN - SCOPUS:83755163835
SN - 9783037852958
T3 - Advanced Materials Research
SP - 6762
EP - 6768
BT - Manufacturing Science and Technology
T2 - 2011 International Conference on Manufacturing Science and Technology, ICMST 2011
Y2 - 16 September 2011 through 18 September 2011
ER -