摘要
The NiCr-Cr3C2/Ni@MoS2/Ti6Al4V self-lubricating and wear resistant composite coatings were successfully fabricated on the surface of Ti6Al4V via laser cladding. The effect of Ni@MoS2 addition on the microstructure of the composite coating was investigated through a combination of first-principles calculations and experimental characterization. Subsequently, the intrinsic relationship between the microstructural evolution of and the wear properties of composite coatings was elucidated. The results demonstrated that the composite coatings with varying Ni@MoS2 dosages consisted of β phases matrix, along with in-situ synthesized TiC, Ti2Ni, Ti2S, and TiS3 phases. First-principles calculations and experimental results indicated that the sufficient in-situ synthesis of a lubricating phase (TiS3) with two-dimensional layered structures and a strengthened phase (Ti2S) effectively inhibits adhesion wear and enhances surface bearing capacity. Consequently, the composite coating containing 20 wt% Ni@MoS2 exhibits reduced coefficient of friction (COF) and wear rates simultaneously.
源语言 | 英语 |
---|---|
文章编号 | 110610 |
期刊 | Tribology International |
卷 | 207 |
DOI | |
出版状态 | 已出版 - 7月 2025 |