TY - JOUR
T1 - Effect of hygrothermal aging on moisture diffusion and tensile behavior of CFRP composite laminates
AU - DU, Yong
AU - MA, Yu'e
AU - SUN, Wenbo
AU - WANG, Zhenhai
N1 - Publisher Copyright:
© 2022 Chinese Society of Aeronautics and Astronautics
PY - 2023/3
Y1 - 2023/3
N2 - Carbon Fiber Reinforced Polymer (CFRP) composites are widely used in aircraft structures, because of their superior mechanical and lightweight properties. CFRP composites are often exposed to hygrothermal environments in service. Temperature and moisture can affect the material properties of composites. In order to make clear the moisture diffusion behavior and the properties degradation of composites, the TG800/E207 composite laminates with four stacking sequences [0]16, [90]16, [±45]4s, and [(+45/0/0/–45)s]s are designed and manufactured. Moisture absorption tests are carried out at 80 ℃, 90 %RH. It is shown that the moisture absorption curves of composite laminates present a three-stage. A modified Fickian model was proposed to capture the diffusion behavior of TG800/E207 composite laminates. The relationships among the non-Fickian parameters, the environmental parameters and the stacking sequences of CFRP were correlated and compared. Results showed that the modified Fickian curve is sensitive to the diffusivity of Stage I and Stage II. Compared with unaged specimens, the maximum tensile stress for [0]16, [90]16, [±45]4s, and [(+45/0/0/–45)s]s decreased by 14.94 %, 28.15 %, 11.96 %, and 26.36 %, respectively. The strains at failure for [0]16, [90]16, [±45]4s, and [(+45/0/0/–45)s]s decreased by 55.38 %, 62.65 %, 46.41 %, and 31.71 %, respectively. The elastic modulus for [0]16, [90]16, [±45]4s, and [(+45/0/0/–45)s]s increased by 90.93 %, 94.57 %, 49.22 %, and 8.22 %, respectively. [90]16 sample has the minimum saturated moisture content and the maximum strength degeneration.
AB - Carbon Fiber Reinforced Polymer (CFRP) composites are widely used in aircraft structures, because of their superior mechanical and lightweight properties. CFRP composites are often exposed to hygrothermal environments in service. Temperature and moisture can affect the material properties of composites. In order to make clear the moisture diffusion behavior and the properties degradation of composites, the TG800/E207 composite laminates with four stacking sequences [0]16, [90]16, [±45]4s, and [(+45/0/0/–45)s]s are designed and manufactured. Moisture absorption tests are carried out at 80 ℃, 90 %RH. It is shown that the moisture absorption curves of composite laminates present a three-stage. A modified Fickian model was proposed to capture the diffusion behavior of TG800/E207 composite laminates. The relationships among the non-Fickian parameters, the environmental parameters and the stacking sequences of CFRP were correlated and compared. Results showed that the modified Fickian curve is sensitive to the diffusivity of Stage I and Stage II. Compared with unaged specimens, the maximum tensile stress for [0]16, [90]16, [±45]4s, and [(+45/0/0/–45)s]s decreased by 14.94 %, 28.15 %, 11.96 %, and 26.36 %, respectively. The strains at failure for [0]16, [90]16, [±45]4s, and [(+45/0/0/–45)s]s decreased by 55.38 %, 62.65 %, 46.41 %, and 31.71 %, respectively. The elastic modulus for [0]16, [90]16, [±45]4s, and [(+45/0/0/–45)s]s increased by 90.93 %, 94.57 %, 49.22 %, and 8.22 %, respectively. [90]16 sample has the minimum saturated moisture content and the maximum strength degeneration.
KW - CFRP
KW - Hygrothermal aging
KW - Moisture diffusion
KW - Stacking sequence
KW - Tensile behavior
UR - http://www.scopus.com/inward/record.url?scp=85147566590&partnerID=8YFLogxK
U2 - 10.1016/j.cja.2022.11.022
DO - 10.1016/j.cja.2022.11.022
M3 - 文章
AN - SCOPUS:85147566590
SN - 1000-9361
VL - 36
SP - 382
EP - 392
JO - Chinese Journal of Aeronautics
JF - Chinese Journal of Aeronautics
IS - 3
ER -