TY - JOUR
T1 - Effect of Crystal Transformation on the Intrinsic Defects and the Microwave Absorption Performance of Mo2TiC2Tx/RGO Microspheres
AU - Ling, Mengyun
AU - Ge, Feijie
AU - Wu, Fei
AU - Zhang, Lei
AU - Zhang, Qiuyu
AU - Zhang, Baoliang
N1 - Publisher Copyright:
© 2023 Wiley-VCH GmbH.
PY - 2024/3/1
Y1 - 2024/3/1
N2 - The nitrides and carbides of transition metals are highly favored due to their excellent physical and chemical properties, among which MXene is a hot research topic for microwave absorption. Herein, the controlled preparation of 3D Mo2TiC2Tx-based microspheres toward microwave absorption is reported for the first time. With the merits of the performances of both reduced graphite oxide (RGO) and MXene sufficiently considered, the influence of carbonization temperature on the internal crystal structure and the effective microwave-material interaction surface of the prepared Mo2TiC2Tx/RGO is systematically investigated. The structure–activity relationships relating the apparent morphology and crystal structure to the microwave absorption performance are deeply explored, and the wave absorption mechanism is put forward as well. The results show that the Mo2TiC2Tx/RGO-700 product obtained after heating treatment at 700 °C exhibits excellent microwave absorption performance, with the RLmin being up to −55.1 dB@2.1 mm@13.8 GHz, and the corresponding effective absorption bandwidth covering 5.7 GHz. The outstanding microwave absorption characteristics are attributed to the appropriate impedance matching, high specific surface area, rich intrinsic defects, desirable conductivity, and strong multipolarization capabilities. This work enriches the types of MXene-based composite absorbers and provides a new strategy for controlled preparation of high-performance 3D composite absorbers.
AB - The nitrides and carbides of transition metals are highly favored due to their excellent physical and chemical properties, among which MXene is a hot research topic for microwave absorption. Herein, the controlled preparation of 3D Mo2TiC2Tx-based microspheres toward microwave absorption is reported for the first time. With the merits of the performances of both reduced graphite oxide (RGO) and MXene sufficiently considered, the influence of carbonization temperature on the internal crystal structure and the effective microwave-material interaction surface of the prepared Mo2TiC2Tx/RGO is systematically investigated. The structure–activity relationships relating the apparent morphology and crystal structure to the microwave absorption performance are deeply explored, and the wave absorption mechanism is put forward as well. The results show that the Mo2TiC2Tx/RGO-700 product obtained after heating treatment at 700 °C exhibits excellent microwave absorption performance, with the RLmin being up to −55.1 dB@2.1 mm@13.8 GHz, and the corresponding effective absorption bandwidth covering 5.7 GHz. The outstanding microwave absorption characteristics are attributed to the appropriate impedance matching, high specific surface area, rich intrinsic defects, desirable conductivity, and strong multipolarization capabilities. This work enriches the types of MXene-based composite absorbers and provides a new strategy for controlled preparation of high-performance 3D composite absorbers.
KW - MoTiCT
KW - graphdiyne
KW - microwave absorption
KW - ultrasonic spray
UR - http://www.scopus.com/inward/record.url?scp=85174294521&partnerID=8YFLogxK
U2 - 10.1002/smll.202306233
DO - 10.1002/smll.202306233
M3 - 文章
C2 - 37849033
AN - SCOPUS:85174294521
SN - 1613-6810
VL - 20
JO - Small
JF - Small
IS - 9
M1 - 2306233
ER -